Abstract:
A liquid sample analyzer includes a flow cell, a light source, and a lamp temperature management system. The flow cell is configured to receive a flow of a liquid sample from a liquid sample source. The light source includes a lamp configured to emit light to illuminate the flow of the liquid sample in the flow cell. The lamp temperature management system includes: an air flow generator operable to generate a turbulent air flow to cool the lamp; a thermally conductive primary housing encapsulating the lamp such that a primary air gap is provided between the primary housing and the lamp; and a thermally conductive secondary housing surrounding the primary housing and configured to deflect the turbulent air flow away from the primary housing.
Abstract:
Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. A switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
Abstract:
A method for operating a laser spectrometer includes passing light of a semiconductor laser through a gas mixture containing a gas component and through an etalon structure onto a detector. The method also includes varying an injection current of the laser based on a predefined current-time function in order to tune the wavelength of the laser in a tuning range using a specific absorption line of the gas component. The method further includes modulating the function with a modulation signal having a frequency and alternately a first modulation amplitude and a second modulation amplitude. The method also includes evaluating a detector signal generated by the detector for determining (1) the concentration of the gas component upon the modulation with the first modulation amplitude and (2) the wavelength stabilization of the laser upon the modulation with the second modulation amplitude at the second harmonic of the frequency.
Abstract:
A tunable laser source that includes multiple gain elements and uses a spatial light modulator in an external cavity to produce spectrally tunable output is claimed. Several designs of the external cavity are described, targeting different performance characteristics and different manufacturing costs for the device. Compared to existing devices, the tunable laser source produces high output power, wide tuning range, fast tuning rate, and high spectral resolution.
Abstract:
A method of microscopy and an illumination optical device with a hollow cone for a microscope, the illumination device includes a first conical lens (1) able to receive a collimated incident light beam (10) and form a conical light beam (20), a second conical lens (5) arranged in such a way as to receive the conical light beam (20, 40) and to form a cylindrical light beam with a black background (50) and an optical lens (6) having an image focal plane (12) arranged in such a way as to receive the cylindrical light beam with a black background (50), to form a hollow cone light beam (60) and to focus the hollow cone light beam (60) into a point (18) in the image focal plane (12).
Abstract:
An infrared radiation element includes: a first insulating layer having heat insulating properties and electrically insulating properties; a heating element layer provided on the first insulating layer and configured to radiate infrared radiation when energized; and a second insulating layer provided on an opposite side of the heating element layer from the first insulating layer and having heat insulating properties and electrically insulating properties. The second insulating layer transmits the infrared radiation radiated from the heating element layer. The heating element layer has such a sheet resistance that impedance of the heating element layer matches impedance of space which is in contact with the second insulating layer.
Abstract:
An image sensor unit includes: a plurality of light sources each including an LED chip; a plurality of light guides that are arranged in parallel to face incident surfaces on one side in a longitudinal direction for each of the plurality of light sources and that guide light from the plurality of light sources to a bill; an image sensor that converts light from the bill to an electric signal; a sensor substrate for mounting the image sensor; and a circuit board that is provided with the plurality of light sources on a same mounting surface and that is arranged on the sensor substrate on one side in the longitudinal direction of the plurality of light guides, wherein the sensor substrate includes a connection hole on one side in the longitudinal direction of the sensor substrate, and the circuit board is connected to the sensor substrate by connecting a connecting portion including a plurality of external connection pads to the connection hole.
Abstract:
A Raman spectroscopic apparatus analyzes a substance under analysis and includes a light source that emits light of a first wavelength, an optical device that adsorbs the substance under analysis and is irradiated with the light of the first wavelength, and an optical detector that receives light radiated from the optical device. The optical device includes a first structural member that generates charge transfer resonance in response to the light of the first wavelength and a second structural member that is less than or equal to 5 nm from the first structural member and generates surface plasmon resonance in response to the light of the first wavelength. The first structural member is made of a metal or a semiconductor, and the second structural member is made of a metal different from the material of the first structural member.
Abstract:
An apparatus for analyzing, identifying or imaging an target including first and second laser beams coupled to a pair of photoconductive switches to produce CW signals in one or more bands in a range of frequencies greater than 100 GHz focused on and transmitted through or reflected from the target; and a detector for acquiring spectral information from signals received from the target and using a multi-spectral heterodyne process to generate an electrical signal representative of some characteristics of the target. The lasers are tuned to different frequencies and a frequency shifter in the path of one laser beam allows the terahertz beam to be finely adjusted in one or more selected frequency bands.
Abstract:
A sensor system for sensing the presence of methane and sulfur hexafluoride in an area includes (i) a laser assembly including a quantum cascade gain medium that generates a MIR output beam that is directed at the area; and (ii) an imager that captures a thermal image of the area when the MIR output beam is generated. To sense the presence of methane, the MIR output beam has a center wavelength that is in the range of between approximately 7.654 and 7.668 microns. Alternatively, to sense the presence of sulfur hexafluoride, the MIR output beam has a center wavelength that is in the range of between approximately 10.56 and 10.58 microns.