Abstract:
An apparatus for determining the depolarization efficiency of a environment includes a transmitter, a receiver, and signal processing circuitry. A reference object is located within the environment at a reference distance. The transmitter includes a radiation source providing incident radiation that has an initial polarization as it enters the environment. The receiver receives returned radiation from the reference, which may be diffuse reflection or photoluminescence. The signal processing circuitry calculates the depolarization efficiency of the environment from the initial polarization, luminescence or final polarization, and the reference distance. A method of determining depolarization efficiency includes directing incident radiation having initial polarization through an environment onto a reference, detecting returned radiation from the reference, and calculating the depolarization efficiency using the initial polarization and the luminescence or final polarization.
Abstract:
An spectrometer including Raman and LIBS spectroscopy capabilities is disclosed. The spectrometer includes a laser source configurable to produce a lased light directable towards a target substance, the laser source having a single wavelength and having sufficient power to cause a portion of the target to emit Raman scattering and sufficient to ablate a portion of the target substance to produce a plasma plume. A separate remote light collector is optically configurable to collect light emitted from the portion of the target emitting Raman scattering and from the portion of the target producing the plasma plume. A filter is optically coupled to the remote light collector to remove reflected light and Rayleigh-scattered light, and a spectroscope is optically coupled to the filter and configured to separate the collected and filtered light into a frequency spectrum comprising a Raman spectrum and a laser-induced breakdown spectrum. Finally, an electronic light sensor is used to record the frequency spectrum.
Abstract:
The invention relates to a crystal fiber, a Raman spectrometer using the same and a inspection method thereof. The crystal fiber comprises a sapphire crystal is doped with two transition metals having different concentrations. An excitation light beam at a specific wavelength can propagate along the crystal fiber to generate a narrow-band light beam and a wide-band light beam to project on a specimen. Raman scattered light is emitted from the specimen. The wavelength of the Raman scattered light falls within the wavelength range of the wide-band light beam so that the wide-band light beam is enhanced at some characteristic wavelengths to facilitate Raman spectroscopy.
Abstract:
A sensor for detecting a drug substance (15) from exhaled breath of a subject in-situ. Its collecting surface has a Surface Enhanced Raman Spectroscopy (SERS)-active layer (14) of a SERS-active material. The collecting surface is arranged as an outer surface of a waveguide (12) for contact with exhaled breath, such that at least traces of said drug substance (15) in said exhaled breath can contact said SERS-active layer for read-out of a Raman shift spectrum.
Abstract:
Methods and apparatus for screening the unknown contents of containers using Raman spectroscopy are disclosed, especially for security screening applications such as in airports. A probe light beam is directed through the wall of a container to a sample region within the container contents. Light scattered out of the beam within the sample region is collected along a path which passes through a separate part of the container wall, for Raman spectral analysis.
Abstract:
A vibrating tip surface enhanced Raman spectroscopy (SERS) apparatus, system and method employ a nano-needle configured to vibrate. The apparatus includes the nano-needle with a substantially sharp tip at a free end opposite an end attached to a substrate. The tip is configured to adsorb an analyte. The apparatus further includes a vibration source configured to provide an alternating current (AC) electric field that induces a vibration of the free end and the tip of the nano-needle. Vibration of the nano-needle under the influence of the AC electric field facilitates detection of a Raman scattering signal from the analyte adsorbed on the nano-needle tip. The system further includes a synchronous detector configured to be gated cooperatively with the vibration of the nano-needle. The method includes inducing the vibration, illuminating the vibrating tip to produce a Raman signal, and detecting the Raman signal using the detector.
Abstract:
An improved apparatus and method for performing Raman spectroscopy in a scattering medium, where the scattering induced phase modulation is compensated by using a spatial light modulator to shape the wavefront of the laser beam. This allows the laser beam to be focused to a spot inside the inhomogeneous material with low distortion, thus stimulating Raman signal from the focus point for spectral analysis.
Abstract:
A method of measuring Raman signals comprises: an analyte placing step of placing an analyte on a detection surface of a microstructure plate which generates an enhanced electric field when irradiated with excitation light; an irradiating step of irradiating the detection surface with the excitation light so that the enhanced electric field is generated around the detection surface and light is emitted from the analyte and the detection surface to be enhanced by the generated enhanced electric field; a Raman signal obtaining step of detecting the enhanced light to obtain a Raman signal emitted from the analyte and a background signal for use as a reference, the Raman signal and the background signal having respective intensities; and a normalizing step of normalizing the Raman signal from the analyte by dividing the intensity of the Raman signal from the analyte by the intensity of the background signal obtained as the reference.
Abstract:
The invention provides a flow cytometric system comprising a first sensor positioned axially to a light source; a channel comprising means for receiving a sample target and interposed between said first sensor and light source; and a second sensor placed at an angle to said first sensor adapted to sense side scattering and/or fluorescent components and said first sensor is adapted to sense a forward scattering component in response to light illuminating the sample target in said channel. In another embodiment the invention provides for a wide dynamic range sensor comprising a plurality of photodiode pixels; wherein at least one or more of said photodiode pixels are voltage biased in one or more of the following modes: photon counting, normal, linear avalanche or Geiger modes, for wide dynamic sensor range operation. By altering the reverse bias voltage, thus putting each photodiode into one of normal, avalanche or Geiger mode, the dynamic range of incident scattering and fluorescent power to which the filter cell array is sensitive to is greatly increased, thus increasing the operational sensitivity and specificity of the cytometric instrument.
Abstract:
System and method for differentiating tissue margins in a biological sample using pulsed laser excitation and time-gated detection. A region containing a biological tissue is irradiated with substantially monochromatic pulsed laser light to thereby produce Raman scattered photons. The Raman scattered photons are detected using time-gated detection to thereby obtain a Raman spectroscopic image from the irradiated region characteristic of either a neoplastic portion or a non-neoplastic portion of the region containing the biological tissue. A boundary between a neoplastic portion and a non-neoplastic portion is differentiated and the boundary location in the Raman spectroscopic image is displayed.