Abstract:
There is provided a portable measuring system having a biophotonic sensor. The portable measuring system also includes a tunable light source, an output intensity detector and an output wavelength detector, which are mounted therein. The portable measuring system can precisely measure a variation in the reflectivity spectrum and/or the transmittance spectrum of the biophotonic sensor before and after an antigen-antibody reaction by varying the wavelength of the tunable light source. Thus, the concentration of the antigen is precisely measured.
Abstract:
Techniques are disclosed relating to gas leak detection. The techniques can be deployed, for example, in compact, handheld portable devices usable for detecting leaks in space-confined applications. The devices generally include an unstablized laser and thermal imaging camera that allow for detection of gas that absorbs at least some of the wavelength of operation of the unstablized laser. The devices can be operated at a low-power density for safety and/or may be configured to mitigate wavelength hopping associated with unstablized laser light sources.
Abstract:
Systems and methods for fast and sensitive standoff surface-hazard detection with high data throughput, high spatial resolution and high degree of pointing flexibility. The system comprises a first hand-held unit that directs an excitation beam onto a surface that is located a distance away from the first unit and an optical subsystem that captures scattered radiation from the surface as a result of the beam of light. The first unit is connected via a link that includes a bundle of optical fibers, to a second unit, called the processing unit. The processing unit comprises a fiber-coupled spectrograph to convert scattered radiation to spectral data, and a processor that analyzes the collected spectral data to detect and/or identify a hazardous substance. The second unit may be contained within a body-wearable housing or apparatus so that the first unit and second unit together form a man-portable detection assembly. In one embodiment, the system can continuously and without interruptions scan a surface from a 1-meter standoff while generating Raman spectral-frames at rates of 25 Hz.
Abstract:
A spectroscopic chemical compound identification system includes a container, a memory, a spectrometer, and a processor. The container receives unknown chemical compound. The memory stores a plurality of spectral signatures corresponding to known chemical compounds. The spectrometer measures a spectral signature of the unknown chemical compound through the container. The processor is connected to the memory and the spectrometer, performs a comparison of the spectral signature with at least one of the plurality of spectral signatures, and determines the identity of the unknown chemical compound from the comparison. The system can be housed in a portable handheld housing. A chemical compound can include a pharmaceutical or controlled substance. The system can be also be used to determine if a pharmaceutical or controlled substance is present within an unknown mixture of chemical compounds.
Abstract:
A device (110) for determining at least one optical property of a sample (112) is proposed. The device (110) comprises a tuneable excitation light source (114; 410) for applying excitation light (122) to the sample (112). The device (110) furthermore comprises a detector (128, 130; 312) for detecting detection light (132, 136; 314) emerging from the sample (112). The excitation light source (114; 410) comprises a light-emitting diode array (114), which is configured at least partly as a monolithic light-emitting diode array (114). The monolithic light-emitting diode array (114) comprises at least three light-emitting diodes (426) each having a different emission spectrum.
Abstract:
A gas detector (10) that is arranged to sense the concentration levels of target gases oxygen, methane, carbon monox-ide, and hydrogen sulphide, within a gas sample from an environment surrounding the detector. The gas detector (10) comprises laser sources (12a-12d) that are arranged to transmit radiation through the gas sample at four target wavelengths that correspond approximately to the optimum absorption wavelengths of each of the target gases and an optical detector (16) that is arranged to sense the intensity of the radiation transmitted through the gas sample at each of the target wavelengths. A control system (22) generates representative concentration level information for the target gases based on the level of absorption of the radiation transmitted.
Abstract:
The invention concerns a portable device for reading a fluorescent-labelled, membrane based assay, to detect the presence of an analyte in a sample. The portable device comprises a light sealed housing which includes a receiving member to receive a membrane based assay. The light sealed housing comprises a first light source for illuminating a first portion of the membrane with light, a first photodetector, a light guide and a microprocessor. The first photodetector is operable to detect fluoresced light emitted by an excited fluorescent label captured by a reagent laid down in the first portion of the membrane and to measure an intensity of the fluoresced light. The light guide guides illuminated light from the first light source to the first portion of the membrane and guides fluoresced light emitted by the excited fluorescent label to the first photodetector. The microprocessor is operable to process the measured intensity of the fluoresced light to determine whether the analyte is present.
Abstract:
A fluid contamination analyzer has a sample cell containing a trapping medium capable of trapping contaminants suspended in the aqueous fluid flowing through the trapping medium, a light source for illuminating the trapping medium to cause the entrapped contaminants generate a secondary radiation indicative of the identity and quantity of the contaminants, and a photodetector for receiving the secondary radiation. The fluid contamination analyzer has a reflective shell in the form of an ellipsoid extending at least partially around the sample cell and the detector, the sample cell being positioned at one of the focal points of the ellipsoid, and the photodetector at the other point of the ellipsoid to receive the secondary radiation reflected by the reflective shell.
Abstract:
A portable illumination device, for illuminating an object through a medium having an absorption coefficient, has a lighting unit including at least two differently colored light sources for emitting light having a color distribution and a control unit for adjusting the color distribution. The control unit is adapted to receive a distance estimate corresponding to the distance between the illumination device and the object, and adjust the color distribution depending on the distance estimate, such that light reflected from the object is perceived to have substantially correct color reproduction.
Abstract:
A method of determining a film coating thickness on a substrate including making near-IR spectra of a series of coating thickness or coating weight standards on an appropriate substrate material to match sample material in question, pre-processing the data to prepare it for multivariate calibration methods, performing the multivariate calibration, saving the calibration model in the hand-held near-IR device in an appropriate format, and using the calibration model to predict sample material thickness in question from their near IR spectra.