Abstract:
The present invention provides an electronic assembly 400 and a method for its manufacture 800, 900, 1000 1200, 1400, 1500, 1600, 1700. The assembly 400 uses no solder. Components 406, or component packages 402, 802, 804, 806 with I/O leads 412 are placed 800 onto a planar substrate 808. The assembly is encapsulated 900 with electrically insulating material 908 with vias 420, 1002 formed or drilled 1000 through the substrate 808 to the components' leads 412. Then the assembly is plated 1200 and the encapsulation and drilling process 1500 repeated to build up desired layers 422, 1502, 1702. Assemblies may be mated 1800. Within the mated assemblies, items may be inserted including pins 2202a, 2202b, and 2202c, mezzanine interconnection devices 2204, heat spreaders 2402, and combination heat spreaders and heat sinks 2602. Edge card connectors 2802 may be attached to the mated assemblies.
Abstract:
Electrical circuit apparatus and methods including hermeticity testing structures for testing the hermeticity of the electrical circuit apparatus.
Abstract:
A substantially rectangular shaped power amplifier module includes a power amplifier for amplifying radio frequency signals, a bias control terminal and a power sensing terminal disposed on the same side of the power amplifier module, an input terminal and a ground terminal disposed on the same side of the power amplifier module, and an output terminal and one or more power supply terminals disposed on the same side of the power amplifier module.
Abstract:
A skin-mounted digital audio device composed of one or more removable adhesive sheets, a battery layer, and flex circuitry. The device can be folded and unfolded, and permits convenient, hands-free wearing and operation by a user via the adhesive sheet(s).
Abstract:
A semiconductor device with a first (101) and a second (111) semiconductor chip assembled on an insulating flexible interposer (120). The interposer, preferably about 25 to 50 μm thick, has conductive traces (121), a central planar rectangular area and on each side of the rectangle a wing bent at an angle from the central plane. The central area has metal studs (122, 123) on the top and the bottom surface, which match the terminals of the chips, further conductive vias of a pitch center-to-center about 50 μm or less. The side wings have contact pads (130) with metallic connectors (131) on the bottom surface; the connectors may be solder balls, metal studs, or anisotropic conductive films. The second chip is adhesively attached to a substrate, whereby the interposer faces away from the substrate. The interposer side wings have a convex bending (150) downwardly along the second chip and a concave bending (151) over the substrate; the side wing connectors are attached to the matching substrate sites.
Abstract:
New and unique apparatuses, systems and methods are provided for constructing and implementing a 3-Dimensional multi-layered modular computer architecture that significantly improves computer mass, volume and power densities through the use of 3-Dimensional layered structure.
Abstract:
Methods for assembling a stack package for a high density IC module on a PCB include the steps of assembling a first layer of the stack package on the PCB, assembling a second layer of the stack package on the first layer and assembling a third layer of the stack package on the second layer, such that each layer is provided in electrical communication with the PCB. Additional layers may be added to the stack package.
Abstract:
The present invention provides multi-layer multi-chip circuit board comprising at least two ATAB carriers having chips thereon, stacked upon each other in a pyramid configuration and attached to a substrate, thus reducing the required area on the substrate for mounting components to form a circuit board.
Abstract:
A hybrid integration method includes: assembling a motherboard chip, assembling a daughterboard chip, and assembling an integrated chip. The motherboard chip includes a motherboard chip body, a first metal region, a first vertical support assembly, and a first waveguide region arranged on the motherboard chip body, and the first waveguide region includes a first conventional waveguide region and a first coupling waveguide region used for vertical coupling which are fixedly connected to each other; the daughterboard chip includes a daughterboard chip body, a second metal region, a second vertical support assembly and a second waveguide region arranged on the daughterboard chip body, and the second waveguide region includes a second conventional waveguide region and a second coupling waveguide region used for vertical coupling which are fixedly connected to each other.