Abstract:
A disk drive suspension interconnect, and method therefor. The interconnect has a metal grounding layer, a metal conductive layer and an insulative layer between the metal grounding layer and the conductive metal layer. A circuit component such as a slider is electrically connected to the conductive layer along a grounding path from the circuit component and the conductive layer to the metal grounding layer through an aperture in the insulative layer. For improved electrical connection a tie layer is provided through the insulative layer onto the grounding layer in bonding relation with the ground layer. A conductor is deposited onto both the conductive metal layer and the tie layer in conductive metal layer and tie layer bonding relation, and the circuit component is thus bonded to the grounding layer by the conductor.
Abstract:
An end of a first line and an end of a second line of a first write wiring pattern are arranged on both sides of a third line of a second write wiring pattern. Circular connection portions are provided at the ends of the first line and the second line. In addition, through holes are formed in respective portions of a base insulating layer below the connection portions. Each connection portion comes in contact with a connecting region of a suspension body within the through hole.
Abstract:
A structure is disclosed for connecting an electrically-connectable metal stiffener to a ground connection within a flexible substrate, the stiffener comprising nickel-gold plated stainless steel. In one embodiment the stiffener is secured to the flexible substrate by a non-conducting adhesive which includes an opening over a ground connection, the adhesive opening being filled by a conductive epoxy. A sequence for applying the disclosed materials discloses a method for attaching the stiffening structure to the flexible substrate.
Abstract:
Provided is a method of manufacturing a PCB, the method comprising: providing a substrate including an aluminum core; forming a via hole passing through the substrate; substituting the surface of the aluminum core with a zinc film by performing a zincate treatment on the inner surface of the via hole; substituting the zinc film with a metal film by performing substitution plating on the zinc film; forming a first plated film on the surface of the via hole, where the metal film is formed, through electroless plating; and forming a second plated film on the first plated film through electroplating.
Abstract:
The insulation base side of single-sided FPC is turned to the die side, and the mounting surface side of ground circuit is turned to the upper side, and the FPC is placed on die (a). When the portion of ground circuit where the conduction is realized and metal reinforcing plate are punched by punch of which the clearance dimension is made to be 50 to 95% of the thickness of the material to be punched, hole sagging will be formed (b). The insulation base 1 side is turned up, electrically conductive adhesive and metal reinforcing plate are laminated in this order, heating pressing is performed with the press apparatus for metal reinforcing plate to be laminated (c). Thereby, laminated FPC is formed (d). At this time, since electrically conductive adhesive is injected into hole sagging by press pressing, the electrical connection of metal reinforcing plate and ground circuit can be attained by the interlaminar conduction by means of electrically conductive adhesive, and there is also no residual air.
Abstract:
Provided is a circuit device in which an electronic circuit to be incorporated therein operates stably. A hybrid integrated circuit device includes multiple circuit boards which are disposed on approximately the same plane. An electronic circuit including a conductive pattern and a circuit element is formed on each top surface of the circuit boards. Furthermore, these circuit boards are integrally supported by a sealing resin. Moreover, a lead connected to the electronic circuit formed on the surface of the circuit board is led out from the sealing resin to the outside.
Abstract:
A recording apparatus, including: a recording head including an actuator; a head holder holding the head; a circuit board disposed on the holder and configured to be connected to an external signal source; a drive circuit operable to drive the actuator; a flexible wiring member which includes wires that connect the actuator and the circuit board, which is elongated in a direction in which the wires extend, which is connected to the actuator and the circuit board at longitudinally opposite ends thereof, respectively, and on which the drive circuit is mounted between the longitudinal opposite ends, the wires including (a) a common voltage wire which connects common-voltage portions of the drive circuit and the circuit board and (b) a drive signal wire for driving the actuator; and a radiator having heat conductivity and electric conductivity and disposed between the head and the circuit board so as to extend along the wiring member, the radiator being heat-conductively and electrically joined to: (a) the common voltage wire in the vicinity of the drive circuit; (b) at least one portion of the common voltage wire intermediate between the drive circuit and the circuit board; and (c) at least one of (c-1) the common voltage wire in the vicinity of the circuit board and (c-2) the common-voltage portion of the circuit board connected to the common voltage wire of the wiring member.
Abstract:
The wired circuit board includes a metal supporting board, an insulating base layer formed on the metal supporting board, a conductive pattern formed on the insulating base layer, a semiconductive layer formed on the insulating base layer so as to cover the conductive pattern, and a ground connecting portion formed on the metal supporting board to be in contact with the metal supporting board and the semiconductive layer.
Abstract:
A circuit board includes an electrically conductive sheet having an insulative coating surrounding the conductive sheet, with a surface of the insulative coating around an edge of the conductive sheet having an arcuate or rounded shape. At least one electrical conductor is conformally deposited on at least the rounded insulative coating around the edge of the conductive sheet and defined via photolithographic and metallization techniques. Each electrical conductor on the insulative coating thereon around the edge of the conductive sheet conforms to the arcuate or rounded shape of the insulative coating and, therefore, has an arcuate or rounded shape.
Abstract:
A laminating method. A structure that includes first and second dielectric layers respectively positioned on opposing surfaces of a thermally conductive layer is pressurized between 1000 and 3000 psi concurrent with being subjected to a thermal process, including the steps of: (a) heating the structure from ambient room temperature to a temperature between 670° F. to 695° F. in a heatup stage of duration 42 to 57 minutes; (b) after step (a), maintaining the structure at an approximately constant temperature between 670° F. and 695° F. in a dwell stage of duration 105 to 125 minutes; (c) after step (b), cooling the structure to 400° F. in a slow cool stage of duration of 120 to 150 minutes, wherein step (c) is performed after step (b); and (d) after step (3), cooling the structure to ambient room temperature in a rapid cool stage of duration less than 180 minutes.