Abstract:
A printed circuit board includes: a substrate; a land that is disposed on a surface of the substrate, and includes a central portion and a plurality of extended portions, the central portion having the same shape and the same size as a land of a surface mount device, and the extended portions being up-and-down symmetry and right-and-left symmetry with respect to a straight line which passes through the center of the central portion; gaps that are disposed on the surface of the substrate, each of the gaps being disposed on a periphery of the central portion and between the extended portions; and a resist that is disposed on the surface of the substrate, and has an opening portion formed at a position corresponding to the central portion and the gaps.
Abstract:
A solder resist opening structure that exposes an electrode pad through a solder resist opening. The solder resist opening has a bottom diameter of about 80 μm or less with a first tolerance less than about 2.5 μm, the bottom diameter being smaller than a diameter of the electrode pad; an inverted trapezoidal cross section with a top diameter larger than the bottom diameter; and a diameter difference between the top diameter and the bottom diameter of about 10 μm or more with a second tolerance less than about 2.5 μm
Abstract:
Contactless differential coupling structures can be used to communicate signals between circuits located on separate chips or from one chip to a probing device. The contactless coupling structures avoid problems (breaks, erosion, corrosion) that can degrade the performance of ohmic-type contact pads. The contactless coupling structures comprise pairs of conductive pads placed in close proximity. Differential signals are applied across a first pair of differential pads, and the signals are coupled wirelessly to a mating pair of conductive pads. Circuitry for generating and receiving differential signals is described.
Abstract:
An electronic device having a printed circuit board is provided. In one embodiment, the printed circuit board includes a plurality of external pads to be coupled with an external device and a plurality of bypass pads for testing an electric circuit. The external pads are exposed and at least one of the plurality of bypass pads are not exposed from an outer surface of the PCB. A system using the electronic device and a method of testing an electronic device are also provided.
Abstract:
A module includes a wiring board; a plurality of mounting electrodes for component mounting, the mounting electrodes being disposed on one principal surface of the wiring board; a plurality of components mounted on the one principal surface of the wiring board and solder-connected to the mounting electrodes; a solder resist being a photosensitive resin configured to cover the one principal surface of the wiring board, with a plating electrode layer of each mounting electrode exposed; and a sealing resin layer disposed on the one principal surface of the wiring board, the sealing resin layer being configured to cover the photosensitive resin and the components connected to the mounting electrodes. A recess substantially wedge-shaped in cross section is provided at a boundary between the plating electrode layer of each mounting electrode and the solder resist, and the recess is filled with resin of the sealing resin layer.
Abstract:
In a build-up step, a plurality of resin insulation layers and a plurality of conductive layers are alternately laminated in multilayer arrangement on a metal foil separably laminated on a side of a base material, thereby forming a wiring laminate portion. In a drilling step, a plurality of openings are formed in an outermost resin insulation layer through laser drilling so as to expose connection terminals. Subsequently, in a desmear step, smears from inside the openings are removed. In a base-material removing step performed after the build-up step, the base material is removed and the metal foil is exposed.
Abstract:
A circuit substrate includes: a mounting region having an exposed surface that is planarized, and in which a predetermined chip is to be mounted; patterns provided in the mounting region, and including respective top faces that form a part of the exposed surface; and solder bumps provided on the respective patterns, and having substantially same shape as one another.
Abstract:
An electronic module is provided with a circuit board 2, a chip component 3 surface-mounted on the circuit board 2 and a mold member 4 that seals the chip component 3. The circuit board 2 includes a land 7 and a resist pattern 8A that partially covers the land 7. The chip component 3 has a bottom electrode 6b and a side electrode 6c. The resist pattern 8A has an overlapped portion overlapped with the bottom electrode 6b of the chip component 3 in a planar view. A portion of the mold member 4 is filled at least in a first gap D1 between the resist pattern 8A and the first solder portion 10a.
Abstract:
In a circuit board for a semiconductor package, the contact pad of the circuit board is partially exposed through a contact hole and a subsidiary pad is provided around the contact hole in such a way that the contact hole is defined by the subsidiary pad. A subsidiary film having the subsidiary pad is provided on a mask pattern for protecting an internal circuit pattern and the contact pad from their surroundings. A contact terminal is provided on the subsidiary film in such a way that the contact hole is at least partially filled with the contact terminal and the subsidiary pad is covered with the contact terminal and an external body is bonded to the contact terminal. The contact area between the circuit board and the contact terminal is enlarged due to the subsidiary pad, thereby increasing the contact reliability of the semiconductor package.
Abstract:
An electronic substrate includes one or more conductive features. In order to preserve the performance and conductivity of the one or more conductive features, the exposed portions of the conductive features are deposited with a protective layer comprising a layer of silver, followed by a layer of gold. By covering the exposed portions of the conductive features of the electronic substrate with the protective layer, oxidation and exposure of the conductive features is prevented, thereby preserving the performance and conductivity of the copper features. Further, during a soldering process, the protective layer is substantially dissolved, thereby allowing the solder to join directly with the underlying conductive features and improving the performance of the electronic substrate.