Abstract:
A class of aperture coded spectrometer is optimized for the spectral characterization of diffuse sources. The instrument achieves high throughput and high spatial resolution by replacing the slit of conventional dispersive spectrometers with a spatial filter or mask. A number of masks can be used including Harmonic masks, Legendre masks, and Hadamard masks.
Abstract:
The disclosure relates to a portable and/or handheld bioagent detector and methodology described herein that is based in part on advanced Raman Chemical Imaging (“RCI”) technology. According to one embodiment of the present disclosure, the detection system may include a fiber array spectral translator (“FAST”) and may also include a probe which may include a complementary metal oxide semiconductor (CMOS) camera. The probe alleviates the need to place the main instrument close to an unconfined release of a potentially hazardous material and facilitates analysis of a sample that is situated in a hard-to-reach location while minimizing contamination of the detector and operator.
Abstract:
A color measurement system includes a multi-purpose filter and optics assembly. The filter and optics assembly includes at least one tube array for segmenting received light. The segmented light is mixed and the polarization qualities of the light are modified so to minimize the effects caused by angular adjustments. A diffuser mixes the segmented light. Additionally, the color measurement system includes an ambient light attachment for collecting light from the viewing area surrounding the computer display. The ambient light collected is then analyzed, and a viewing area profile is created. The viewing area profile then can be used by software to adjust the colors displayed on the computer displays.
Abstract:
An optical tapped delay line device in accordance with the present invention is a method for and device for spatially resolving the spectral components of an optical signal, i.e., channelizing or spectrum analyzing the wavelength content of an optical signal. The device is based on a tapped optical delay line and enables numerous related optical signal processing functions.
Abstract:
A nanostructured optical device includes a metal film or a plurality of metal islands having an array of a plurality of openings having a width that is less than at least one first predetermined wavelength of incident radiation to be provided onto the film or the islands. The metal film or islands are configured such that the incident radiation is resonant with at least one plasmon mode on the metal film or metal islands.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
A method and apparatus for producing with a gas discharge laser an output laser beam comprising output laser light pulses, for delivery as a light source to a utilizing tool is disclosed which may comprise a beam path and a beam homogenizer in the beam path. The beam homogenizer may comprise at least one beam image inverter or spatial rotator, which may comprise a spatial coherency cell position shifter. The homogenizer may comprise a delay path which is longer than, but approximately the same delay as the temporal coherence length of the source beam. The homogenizer may comprise a pair of conjoined dove prisms having a partially reflective coating at the conjoined surfaces of each, a right triangle prism comprising a hypotenuse face facing the source beam and fully reflective adjoining side faces or an isosceles triangle prism having a face facing the source beam and fully reflective adjoining side faces or combinations of these, which may serve as a source beam multiple alternating inverted image creating mechanism. The beam path may be part of a bandwidth measuring the bandwidths of an output laser beam comprising output laser light in the range of below 500 femtometers at accuracies within tens of femtometers. The homogenizer may comprise a rotating diffuser which may be a ground glass diffuser which may also be etched. The wavemeter may also comprise a collimator in the beam path collimating the diffused light; a confocal etalon creating an output based upon the collimated light entering the confocal etalon; and a detector detecting the output of the confocal etalon and may also comprise a scanning mechanism scanning the angle of incidence of the collimated light entering the confocal etalon which may scan the collimated light across the confocal etalon or scan the etalon across the collimated light, and may comprise an acousto-optical scanner. The confocal etalon may have a free spectral range approximately equal to the E95 width of the beam being measured. The detector may comprise a photomultiplier detecting an intensity pattern of the output of the confocal etalon.
Abstract:
A lens arrangement is presented. The lens arrangement comprises a first element having a concave reflective surface and defining an optical axis of the lens arrangement, and a second substantially flat and at least partially reflective element spaced-apart from the first element along the optical axis. The second element is configured to allow light passage therethrough and is oriented with respect to the optical axis and the first element such that at a predetermined angle of incidence of an input light beam onto the second element, the input light beam is reflected onto the reflective surface of the first element and reflected therefrom to pass through the second element.
Abstract:
An optical signal processor having a monolithic prism supporting one or more channels, and constructed from a first glass block joined to a second glass block at a beam splitter interface. The monolithic prism has thin film beam splitters and filters (such as I and Q filters) either deposited directly on the prism or attached to it. The beam splitter interface, and the thin film beam splitters and filters are arranged relative to each other so that a portion of the return-ranging collimated encoded beam from an external optical sensor is reflected to all the filters. And detectors are connected over the filters to detect particular components of the collimated encoded beam which are passed through the respective filters.
Abstract:
A miniaturized diffractive imaging spectrometer (DIS) has a footprint less than 2×1 mm2, is about 2.5 mm tall (excluding an image detector, which in some embodiments may be a CCD matrix), and covers the entire visible spectral range from 400 nm to 700 nm with resolution of approximately from 2 nm to 4 nm across the field. The DIS is able to function with multiple input waveguide channels, and is flexible in its various possible configurations, as it can be designed to achieve better resolution or higher number of channels or wider spectral range or smaller size.