Abstract:
An instrument and related process for measuring color, shade, gloss, shape and/or translucence of a tooth. First, the instrument uses searchlight illumination to illuminate a tooth with constant irradiance. Second, the instrument uses colorimetric imaging to collect time-separated frames of different wavelengths of light reflected from a tooth and to combine those frames into a color image. Third, the instrument includes a sanitary shield to establish a reference color and a predetermined distance to a target tooth. Fourth, the instrument provides line-of-sight viewing so an operator may simultaneously view a display of the image on the instrument and the object being measured. Fifth, the instrument is impervious to pollutants because it incorporates a sealed measurement window. Sixth, optical measurements of a tooth taken by a dentist are compared to optical measurements of a prosthetic restoration for that tooth to confirm satisfactory matching of optical characteristics of the tooth and restoration.
Abstract:
The specification discloses a handheld color measurement instrument capable of reading both barcodes and sample colors. The instrument includes a single color measurement engine connected to a control capable of detecting and reading barcodes. When a barcode is detected, the control updates program and/or configuration information in accordance with information contained in the barcode. When a barcode is not detected, the control operates to read sample colors.
Abstract:
A spectrophotometer for measuring light received from a sample is disclosed. The spectrophotometer includes a measurement head housing a sample and an illumination arrangement having a light source essentially continuous in the visible spectral range, formed by light-emitting diodes. The measurement head includes an illumination channel for each light emitting diode directing the light from each diode at a defined angle of incidence onto a measurement spot on the sample and a collecting arrangement capturing the light originating from the measurement spot. A spectrometer is optically connected to the collecting arrangement for splitting the captured light into its spectral components and for generating corresponding electrical signals. An electronic circuit, constructed for selectively controlling the light emitting diodes, controls the illumination arrangement and the spectrometer and processes the electrical measurement signals. A color densitometer, a variant of a spectorphotometer constructed in accordance with the subject disclosure, is also disclosed.
Abstract:
Color/optical characteristics measuring systems and methods are disclosed. Perimeter receiver fiber optics/elements are spaced apart from a central source fiber optic/element and received light reflected from the surface of the object is measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
Color/optical characteristics measuring systems and methods are disclosed. Perimeter receiver fiber optics/elements are spaced apart from a central source fiber optic/element and received light reflected from the surface of the object is measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
The specification discloses a handheld color measurement instrument capable of reading both barcodes and sample colors. The instrument includes a single color measurement engine connected to a control capable of detecting and reading barcodes. When a barcode is detected, the control updates program and/or configuration information in accordance with information contained in the barcode. When a barcode is not detected, the control operates to read sample colors.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
A passive ranging optical system is coupled to an active radar system. The passive ranging optical system provides range and rate information to the active radar system. After receiving the range and rate information, the active radar system uses fewer transmission pulses but achieves higher resolution of the range of the target because of improved range gate information.