Abstract:
The present disclosure relates to a device for measuring an optical absorption property of a fluid as function of wavelength. The device comprises a broadband light source for emitting light, a plurality of integrated optical waveguides for guiding this light, and a light coupler for coupling the emitted light into the integrated optical waveguides such that the light coupled into each integrated optical waveguide has substantially the same spectral distribution. The device also comprises a microfluidic channel for containing the fluid, arranged such as to allow an interaction of the light propagating through each waveguide with the fluid in the microfluidic channel. Each integrated optical waveguide comprises an optical resonator for filtering the light guided by the waveguide according to a predetermined spectral component. The spectral component corresponding to each waveguide is substantially different from the spectral component corresponding to another of the waveguides.
Abstract:
An illumination apparatus for configuration with spectro-fluorometer system includes at least one light emitting diode (LED), a collimator, and a light guide. The at least one LED may be configured to emit light including a first beam-width angle. The collimator is optically coupled to the at least one LED. The collimator is configured to collimate the light emitted from the at least one LED to form a collimated light beam including a second beam-width angle and a first cross-sectional illumination intensity profile. The second beam-width angle may be less than the first beam-width angle. The light guide may be configured to alter a cross-sectional area of the collimated light beam and output a substantially homogenized light beam including a second cross-sectional illumination intensity profile with greater uniformity than the first cross-sectional illumination intensity profile.
Abstract:
Apparatus, systems and methods for use in analyzing discrete reactions are provided. The analytical devices of the invention use an array of nanoscale regions (a chip) that has discrete patches, for example, patches of nanoscale regions. In some embodiments an analytical system is provided that has an analysis chip with an array of patches, each of the patches comprising nanoscale regions that emit fluorescent light when illuminated. The system has a two-dimensional (x, y) array of dichroic prisms, each prism comprising a dichroic element that diverts illumination light up in the z dimension of the array to a patch on the analysis chip above it. Each dichroic element transmits fluorescent light emitted by the patch that it illuminates, whereby the emitted light from each patch passes down through each dichroic prism. The analytical system also has a detector below the array of dichroic prisms that detects the transmitted fluorescent light. Such systems are useful for monitoring many analytical reactions at one time including single molecule sequencing reactions.
Abstract:
The present disclosure relates to systems, methods, and sensors configured to characterize a radiation beam. At least one embodiment relates to an optical system. The optical system includes an optical radiation guiding system. The optical radiation guiding system includes a collimator configured to collimate the radiation beam into a collimated radiation beam. The optical radiation guiding system also includes a beam shaper configured to distribute power of the collimated radiation beam over a discrete number of line shaped fields. A spectrum of the collimated radiation beam entering the beam shaper is delivered to each of the discrete number of line shaped fields. The optical system further includes a spectrometer chip. The spectrometer chip is configured to process the spectrum of the collimated radiation beam in each of the discrete number of line shaped fields coming from the beam shaper.
Abstract:
A spatial filter is made by forming a structure comprising a focusing element and an opaque surface, the opaque surface being disposed remotely from the focusing element in substantially the same plane as a focal plane of the focusing element; and by forming a pinhole in the opaque surface at or adjacent to a focal point of the focusing element by transmitting a substantially collimated laser beam through the focusing element so that a point optimally corresponding to the focal point is identified on the opaque surface and imperfection of the focusing element, if any, is reflected on the shape and position of the pinhole so formed.
Abstract:
An apparatus includes a pipe through which a multiphase fluid flows, with a transparent window structure formed in the pipe. A collimated light source emits light through the transparent window structure into the pipe having a wavelength at which a component of a desired phase of the multiphase fluid is absorptive. A photodetector is positioned such that the emitted light passes through the multiphase fluid in the pipe to impinge upon the photodetector. The photodetector has an actual dynamic range for collimated light detection. Processing circuitry is configured to continuously adjust a power of the collimated light source dependent upon an output level of the photodetector so as to cause measurement of the emitted light over an effective dynamic range greater than the actual dynamic range, and determine a property of the multiphase fluid as a function of the power of the collimated light source.
Abstract:
A detecting apparatus includes a container, and a detecting device including a transmitting module and a receiving module. The transmitting module includes a light-emitting element provided at a first point of the container and operable to transmit a photo signal to propagate toward the container along an optical path. The receiving module includes a light-receiving element provided at a second point of the container and configured to receive the photo signal transmitted through the container. The receiving module is operable to determine whether a substance is present within the container based on receipt of the photo signal. An imaginary tangent plane tangent to the first point is not parallel to an imaginary tangent plane tangent to the second point.
Abstract:
A method for observing biological species on a culture medium contained in a container having at least one translucent face, the method including the steps of: a) directing a light beam onto one portion of the translucent face, so as to define at least one illuminated region and at least one non-illuminated region of the face; and b) acquiring an image of a portion of the surface of the culture medium illuminated by the light beam, the acquisition being carried out through at least one of the non-illuminated regions of the translucent face and along an optical acquisition axis forming a non-zero angle (a) with the direction of propagation of the light beam.
Abstract:
Methods and systems to resolve positions of sample components in fluorescence stochastic microscopy using three-dimensional structured illumination microscopy (“3D-SIM”) are disclosed. In one aspect, components of a sample specimen are labeled with fluorophores and weakly illuminated with a frequency of light to stochastically convert a subset of the fluorophores into an active state. The sample is then illuminated with a three-dimensional structured illumination pattern (“3D-SIP”) of excitation light that causes the activated fluorophores to fluoresce. As the 3D-SIP is incrementally moved within the volume of the sample and images are recorded, computational methods are used to process the images to locate and refine the locations of the activated fluorophores thereby generating a super-resolution image of sample components.
Abstract:
The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising at least one multimode light source, one or more optical sensors comprising a multimode sensor optical waveguide accommodating a distributed Bragg reflector, at least one transmitting optical waveguide for guiding light from said at least one light source to said one or more multimode sensor optical waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light.