Abstract:
There is provided a thin film capacitor and a capacitor-embedded printed board improved in leakage current characteristics. A dielectric layer is formed of a BiZnNb-based amorphous metal oxide with a predetermined dielectric constant without being heat treated at a high temperature, and metallic phase bismuth of the BiZnNb-based amorphous metal oxide is adjusted in content to attain a desired dielectric constant. Also, another dielectric layer having a different content of metallic phase bismuth may be formed. The thin film capacitor including: a first electrode; a dielectric layer including a first dielectric film formed on the first electrode, the dielectric layer comprising a BiZnNb-based amorphous metal oxide; and a second electrode formed on the dielectric layer, wherein the BiZnNb-based amorphous metal oxide contains metallic phase bismuth.
Abstract:
There is described a printed circuit board with a thermally trimmable component embedded therein. A layer of refractory insulating material is provided to provide mechanical support and chemical passivation for the thermally trimmable component. The component is trimmed by applying a sequence of heat pulses the a heating element, which could be the component itself or a separate element. A cavity may be burned in the substrate to provide thermal isolation for the thermally trimmable component.
Abstract:
A method including depositing a suspension of a colloid comprising an amount of nano-particles of a ceramic material on a substrate; and thermally treating the suspension to form a thin film. A method including depositing a plurality of nano-particles of a ceramic material to pre-determined locations across a surface of a substrate; and thermally treating the plurality of nano-particles to form a thin film. A system including a computing device comprising a microprocessor, the microprocessor coupled to a printed circuit board through a substrate, the substrate comprising at least one capacitor structure formed on a surface, the capacitor structure comprising a first electrode, a second electrode, and a ceramic material disposed between the first electrode and the second electrode, wherein the ceramic material comprises columnar grains.
Abstract:
In a printed wiring board 10, an upper electrode connecting portion 52 penetrates through a capacitor portion 40 in top to bottom direction so that an upper electrode connecting portion first part 52a is not in contact with the capacitor portion 40, passes through an upper electrode connecting portion third part 52c provided at the upper portion of the capacitor portion 40, and then connects from the upper electrode connecting portion second part 52b to an upper electrode 42. Furthermore, a lower electrode connecting portion 51 penetrates through the capacitor portion 40 in top to bottom direction so that it is not in contact with the upper electrode 42 of the capacitor portion 40, but is in contact with a lower electrode 41. Therefore, the upper electrode connecting portion 52 and the lower electrode connecting portion 51 can be formed even after in process of build-up, the whole surface is covered by a high dielectric capacitor sheet that has a structure that a high dielectric layer is sandwiched between two metal foils and will afterwards serve as the capacitor portion 40.
Abstract:
A linear coefficient of thermal expansion (CTE) mismatch between two materials, such as between a microelectronic die and a mounting substrate, may induce stress at the interface of the materials. The temperature changes present during the process of attaching a die to a mounting substrate can cause cracking and failure in the electrical connections used to connect the die and mounting substrate. A material with a CTE approximately matching the die CTE is introduced in the mounting substrate to reduce the stress and cracking at the electrical connections between the die and mounting substrate. Additionally, this material may comprise thin film capacitors useful for decoupling power supplies.
Abstract:
A circuit board according to the invention includes a glass substrate, an insulating layer, a plurality of protrusions and a first circuit layer. The insulating layer is disposed on the substrate and has a plurality of protrusion-positioning regions. The protrusion-positioning region is an opening or a concave. Each of the protrusions includes a polymer or a resin material and is disposed in the protrusion-positioning region and surrounded by the insulating layer. The first circuit layer is disposed on the insulating layer and has at least one trace line extending directly onto the protrusion.
Abstract:
Described herein are methods for making articles comprising a dielectric layer formed from any solution composition that can form barium titanate during firing and containing manganese in an amount between 0.002 and 0.05 atom percent of the solution composition, wherein the dielectric layer has been formed on metal foil and fired in a reducing atmosphere.
Abstract:
An electronic component having: a substrate, a lower conductor layer provided on the substrate; an inorganic dielectric film that covers the lower conductor layer; and an upper conductor layer having an upper electrode portion provided on the inorganic dielectric film. The lower conductor layer has a lower electrode portion that together with the upper electrode portion and the inorganic dielectric film constitutes a capacitor, and a coil portion that constitutes an inductor. The entire inorganic dielectric film is formed integrally, and the lower conductor layer is in contact only with the substrate, inorganic dielectric film, and upper conductor layer.
Abstract:
A substrate with hermetically sealed vias extending from one side of the substrate to another and a method for fabricating same. The vias may be filled with a conductive material such as, for example, a fritless ink. The conductive path formed by the conductive material aids in sealing one side of the substrate from another. One side of the substrate may include a sensing element and another side of the substrate may include sensing electronics.
Abstract:
A method for manufacturing a wiring board, comprising the steps of: forming a first electrode layer having first and second opening portions, forming a dielectric layer formed on the first electrode layer and having third and fourth opening portions, forming a second electrode layer formed on the dielectric layer and having fifth and sixth opening portions, wherein the first electrode layer, the dielectric layer, and the second electrode layer form a capacitor; forming an insulating layer inside a first opening defined by the first, third, and fifth opening portions, and a second opening defined by the second, fourth, and sixth opening portions; using a laser beam having a processing diameter to form first and second via holes extending through the insulating layer formed inside the first and second openings, respectively; and forming first and second via wiring portions in the first and second via holes, respectively.