Abstract:
Provided is a small, highly accurate Fourier spectrometer which enables highly accurate detection of an optical path difference in an interferometer. An element for changing to a narrow band is provided to return reflected light to a second light source (4), and the wavelength of light emitted by the second light source is locked, whereby the position of a movable mirror (8) is measured highly accurately and an optical path length (1) and an optical path length (2) match highly accurately.
Abstract:
Snapshot spectral imagers comprise an imaging lens, a dispersed image sensor and a restricted isometry property (RIP) diffuser inserted in the optical path between the source image and the image sensor. The imagers are used to obtain a plurality of spectral images of the source object in different spectral bands in a single shot. In some embodiments, the RIP diffuser is one dimensional. An optional disperser may be added in the optical path, to provide further dispersion at the image sensor. In some embodiments, all imager components except the RIP diffuser may be part of a digital camera, with the RIP diffuser added externally. In some embodiments, the RIP diffuser may be included internally in a digital camera.
Abstract:
An apparatus for producing an image of blotting membranes includes an enclosure, light source, optical system, photodetector, and beamsplitter. The enclosure supports a blotting substrate comprising a first probe characterized by an excitation wavelength and an emission wavelength and a second probe characterized by an excitation wavelength and an emission wavelength. The light source directs diverging light to illuminate an entirety of the active area. The optical system forms an image of the entire active area and comprises an optical filter, the optical filter having an optical characteristic highly transmissive of light at the emission wavelengths and highly reflective of light at the excitation wavelengths. The beamsplitter may comprise an optical characteristic that is highly transmissive of light at the first and second emission wavelengths and that is highly reflective of light at the first and second excitation wavelengths.
Abstract:
An optical system includes a lens, a pupil relay, and an aperture stop positioned at a focal point of the lens between the lens and the pupil relay. The lens is configured to collect a plurality of light bundles. Each light bundle emanates from a field point of an object plane and has a center ray substantially parallel to an optical axis of the lens. The lens is configured to direct the center ray of each light bundle through the aperture stop and onto the pupil relay. The pupil relay is configured to image a plane of the aperture stop onto a sensor array.
Abstract:
An apparatus and method are provided. In particular, at least one first electro-magnetic radiation may be provided to a sample and at least one second electro-magnetic radiation can be provided to a non-reflective reference. A frequency of the first and/or second radiations varies over time. An interference is detected between at least one third radiation associated with the first radiation and at least one fourth radiation associated with the second radiation. Alternatively, the first electro-magnetic radiation and/or second electro-magnetic radiation have a spectrum which changes over time. The spectrum may contain multiple frequencies at a particular time. In addition, it is possible to detect the interference signal between the third radiation and the fourth radiation in a first polarization state. Further, it may be preferable to detect a further interference signal between the third and fourth radiations in a second polarization state which is different from the first polarization state. The first and/or second electro-magnetic radiations may have a spectrum whose mean frequency changes substantially continuously over time at a tuning speed that is greater than 100 Tera Hertz per millisecond.
Abstract:
A multispectral staring array comprises, amongst other things, at least two sensors where each sensor is adapted to detect an image in a different predetermined spectral sensitivity; a first lens to focus capture spectral bands; a spectral filter between the lens and the sensors to subdivide the incident spectral bands; and a second lens to direct and focus the subdivided incident spectral bands on each of the sensors.
Abstract:
A Raman microspectrometer system extends the optical reach and analysis range of an existing Raman microspectrometer to allow analysis and/or repair of an oversized sample. The Raman microspectrometer system includes an extender for extending the optical reach of the existing microspectrometer and a supplemental stage which extends the analysis range of the existing microspectrometer by providing travel capabilities for non-destructive analysis of an entire oversized sample. Such an arrangement decreases manufacturing costs associated with testing oversized samples such as mammography panels, enabling analysis and/or repair to be performed without destruction.
Abstract:
The transmittance of a filter periodically varies with respect to the incident light frequency. Provided that fk is the sum of Fk and νk, or the difference obtained by subtracting Fk from νk, depending on the kth light source among multiple light sources, an incidence guide causes light from the plurality of light sources to be incident on the filter such that the propagation angle of light when light from the kth light source propagates through the interior of the filter equals θk obtained by computation using fk. The incidence guide causes light to be incident on the filter, taking fk to be the sum of νk and Fk for at least one of the light sources, and taking fk to be the difference between νk and Fk for at least one other of the light sources. A detector detects the intensity of transmitted light that transmits through the filter.
Abstract:
A method is provided for testing a diffusely reflective liquid for colour strength, said liquid comprising particles in a carrier medium, e.g. white emulsion paint based on titanium dioxide. The method comprises measuring in situ a lightness parameter of the liquid, of the carrier medium and of the liquid diluted with amounts of carrier medium; and determining from said measurements a dilution parameter indicating the amount of carrier medium needed to produce a predetermined reduction in the lightness parameter of the liquid, said dilution parameter providing an indication of colour strength. The lightness parameter may be L* in the CIE L*, a*, b* colour space, and the test may be carried out using a diffuse reflection probe (10) configured to direct light from said probe (10) into the liquid and configured to collect a portion of the light from the probe (10) diffusely reflected by the paint for determining the lightness parameter. The results may be used for process control e.g. in emulsion paint manufacture.
Abstract:
Modular systems can be used for optical analysis, including in-situ analysis, of stimulated liquids. An excitation module can include a radiation sources, e.g., a laser, LED, lamp, etc. A detection module can include one or more detectors configured to receive spectral and/or temporal information from a stimulated liquid. Such systems can be used to identify or measure optical emissions including fluorescence or scattering. The efficient excitation of liquid samples and collection of emissions from the samples provides substantial, up to four-fold increase in the emission signal over prior systems. In an example, emission measurements can be conducted in an isolated sample compartment, such as using interchangeable modules for discrete sampling, flow-through sampling, or sampling via fiber probe. The systems and methods described herein can be used to characterize natural aquatic environments, including assessments of phytoplankton pigments, biomass, structure, physiology, organic matter, and oil pollution.