Abstract:
An exemplary system to provide visible lighting of a selectable spectral characteristic (e.g. a selectable color combination of light) uses an optical integrating cavity or other diffuse mixing element to combine light of different colors from different color LEDs. Amplitude modulation of pulsed operation the light sources, e.g. pulse amplitude modulation added to a baseline forward bias current for each of the LEDs, controls the amount of each light color supplied to the diffuse mixing element and thus the amount included in the combined light output of the system. A color sensor may provide feedback as to a color characteristic of the combined light, for closed-loop control of one or more of the pulse amplitude modulations. Examples are also disclosed that utilize phosphor doping of one or more of the system's reflective elements, to add desired wavelengths of light to the combined output.
Abstract:
A sensor having an input to an interferometer. The input may receive emissions from a detected fluid. The output of the interferometer may be focused on an array of light detectors. Electrical signals from the detectors may go to a processor. The output of the processor may include a spectrum of the detected fluid. Also, the identity of the fluid may be determined.
Abstract:
A two-dimensional spectroradiometer has an optical system such as an objective optical system 2 and a relay lens 6 for receiving light rays La from a two-dimensional light source L to form an optical image i.e. a first image 2a and a second image 6a, a WBPF 12 as a transmittance wavelength variable filter having a spectral transmittance characteristic that transmittance wavelengths of the light rays La differ from each other depending on transmittance sites of the filter where the respective light rays La pass, a scanning WBPF 10 which scannably holds the WBPF 12 on an optical path forming the optical image, and an image sensor 7 for capturing the second image 6a composed of the light rays La passing through the WBPF 12 at a position corresponding to each of scanning steps of the WBPF 12 to acquire a plurality of images each having a different spectral sensitivity among pixels of the image at the position corresponding to the each of the scanning steps. This arrangement enables to provide a compact and inexpensive two-dimensional spectroradiometer with shortening of the measurement time.
Abstract:
A spectral characteristic measuring apparatus is provided with a memory and a CPU. The memory stores a spectral profile output from a sample light sensor array when light from a lamp is received, and a plurality of spectral profiles to be output from the sensor array at each displaced position in the case where a light separator is displaced relative to a grating member of the sensor array at a certain pitch stepwise in a wavelength diffusing direction. The CPU controls the lamp to emit light in a state that a white plate for calibration is disposed as a sample, compares a spectral profile output from the sensor array for correction with each spectral profile stored in the memory, and sets a displacement amount corresponding to the spectral profile that is most approximate to the corrective spectral profile as a wavelength shift correction amount.
Abstract:
A spectrophotometric system includes a zoom lens assembly that is mounted for axial translation relative to an integrating sphere. The zoom lens assembly includes first and second focusing lens mounted to an axially movable lens carrier. The lens carrier is positioned intermediate first and second sets of mirrors for reflecting/directing SCE and SCI beams toward fiber ports. A reference beam is also emitted from the integrating sphere and transmitted to a processor, thereby resulting in simultaneous tri-beam measurements. The disclosed spectrophotometric systems may also include an aperture plate detection assembly and/or a sample holder assembly that incorporates a dampening gas spring. The aperture plate detection system includes a detection disk that may include a plurality of pre-positioned sensors that interact with an activating ridge formed on the aperture plate for identification thereof.
Abstract:
In a detector for spectrometry attached to an integrating sphere, a plurality of detection elements having different spectral sensitivity characteristics is arranged side by side in the same plane on a base, and a side cover is provided such that the detection elements receive light. Thus, the measurement light is directly irradiated to the respective detection elements. Accordingly, the detector for spectrometry has a fast response speed and is excellent in the sensitivity characteristics in a wide wavelength region in the near-infrared area.
Abstract:
Embodiments of the present disclosure include an oximeter sensor system including a reusable portion including a substantially rigid connector connected to an end of a cable. The substantially rigid connector includes an electronic element housing at least one electronic component of a probe. The system also includes a disposable portion including a flexible wrap comprising a substantially rigid connection port shaped to receive the substantially rigid connector in a releasably securable manner.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient database. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Preferably, a two stage spectral separation is utilized, preferably utilizing a diffraction grating and interference filters.
Abstract:
An individualized modeling equation for predicting a patient's blood glucose values is generated as a function of non-invasive spectral scans of a body part and an analysis of blood samples from the patient, and is stored on a central computer. The central computer predicts a blood glucose value for the patient as a function of the individualized modeling equation and a non-invasive spectral scan generated by a remote spectral device. If the spectral scan falls within the range of the modeling equation, the predicted blood glucose level is output to the patient. If the spectral scan falls outside the range of the modeling equation, regeneration of the model is required, and the patient takes a number of noninvasive scans and an invasive blood glucose level determination. The computer regenerates the individualized modeling equation as a function of the set of spectral scans and corresponding blood glucose values.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient database. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Preferably, a two stage spectral separation is utilized, preferably utilizing a diffraction grating and interference filters.