Abstract:
A sensing system for selective analyte detection in presence of interferences is presented. The sensing system includes an inductor-capacitor-resistor (LCR) resonant sensor includes a substrate, a plurality of first sensing elements mutually spaced apart and disposed on the substrate, a plurality of second sensing elements, each second sensing element disposed overlapping a corresponding first sensing element of the plurality of second sensing elements, and a protecting film applied onto the plurality of first sensing elements and the plurality of second sensing elements, wherein the protecting film is disposed to be in a physical contact with the analyte and is configured to enable an operational contact of the plurality of first sensing elements and the plurality of second sensing elements with the analyte.
Abstract:
A printed circuit board precursor includes a substrate, a catalytic layer, a conductive layer, and a metal layer. The substrate has a top surface, a bottom surface, and a wall defining a channel, and the channel completely penetrates through the substrate from the top surface to the bottom surface. The catalytic layer is formed on the top surface, the bottom surface, and the wall of the substrate. The conductive layer is attached to and covers the catalytic layer. The metal layer is disposed on the conductive layers and filled in the channel.
Abstract:
There is provided an etching liquid composition for a multilayer film containing copper and molybdenum. The etching liquid composition comprises: (A) a peroxosulfate ion source; (B) a copper ion source; and (C) at least one nitrogen compound source selected from the group consisting of ammonia, ammonium ions, amines, and alkyl ammonium ions and has pH 3.5 to 9.
Abstract:
According to the present disclosure, a manufacturing method of a fine wiring pattern is disclosed. The manufacturing method includes preparing a support member, forming a first layer on the support member by thick-film printing, and forming a second layer including Ag on the first layer by the thick-film printing. The method also includes forming a predetermined fine wiring pattern by performing an etching process upon the first layer and the second layer.
Abstract:
A method of making a multi-layer micro-wire structure includes providing a substrate with a plurality of micro-channels. First and second material compositions are provided. The first material composition is coated over the substrate and micro-channels and then removed from the substrate surface but not the micro-channels. The second material composition is coated over the substrate, in the micro-channels, and over the first materials, and then removed from the substrate surface but not the micro-channels. The first and second material compositions are cured in the micro-channels in a common step to form a cured first material layer and a cured second material layer in the micro-channels. The cured first material layer and the cured second material layer form an electrically conductive multi-layer micro-wire in each micro-channel.
Abstract:
The wiring board of the present invention includes an insulating layer, a strip-shaped wiring conductor for signals disposed on a main surface of the insulating layer, and a plain conductor for grounding or power disposed on the main surface of the insulating layer; and the thickness of the plane conductor is larger than the thickness of the strip-shaped wiring conductor. In the wiring board of the present invention, the thickness of the plane conductor is preferably 1 to 15 μm larger than the thickness of the strip-shaped wiring conductor. The strip-shaped wiring conductor has a thickness of preferably 3 to 10 μm, and the plane conductor has a thickness of preferably 5 to 15 μm.
Abstract:
The method for producing conductive tracks includes applying continuous metallization layers to a non-conductive substrate, forming a metallization pattern, and applying to the formed tracks a protective barrier layer and a layer for soldering and/or welding elements of parts to the conductive tracks. The continuous metallization layers are applied by consecutively applying an adhesive layer, a conductive layer, and a metal layer, acting as a mask, to the non-conductive substrate. To form the metallization pattern, a mask is formed by laser ablation on sections of the metal layer not occupied by conductive tracks, then selective chemical etching removes the conductive layer and adhesive sublayer from the exposed sections, and selective chemical etching removes the mask, after which the protective barrier layer and layer for soldering and/or welding are applied.
Abstract:
A copper heat dissipation material having a satisfactory heat dissipation performance is provided. The copper heat dissipation material has an alloy layer containing at least one metal selected from Cu, Co, Ni, W, P, Zn, Cr, Fe, Sn and Mo on one or both surfaces, in which surface roughness Sz of the one or both surfaces, measured by a laser microscope using laser light of 405 nm in wavelength, is 5 μm or more.
Abstract:
The present invention provides a liquid composition used for etching a copper- and titanium-containing multilayer film, a method for etching a copper- and titanium-containing multilayer film by using said liquid composition, a method for manufacturing multilayer-film wiring according to said etching method, and a substrate provided with multilayer-film wiring manufactured according to said manufacturing method. According to the present invention, a liquid composition comprising (A) a maleic acid ion source, (B) a copper ion source and (C) a fluoride ion source and having the pH value of 0-7 is used.
Abstract:
A conductive thin film device includes a substrate and a thin film structure applied to the substrate. The thin film structure is applied as a first layer and forms a one-dimensional nanomaterial networked layer deposited on the substrate. A coating layer overlays the one-dimensional nanomaterial networked layer and can be made from graphene or graphene oxide. The coating layer at least partially covers the nanomaterial networked layer, thereby forming the device as a double-layer structure.