Abstract:
The invention provides a lens system for a plurality of charged particle beams. The lens system comprises an excitation coil providing a magnetic flux to a pole piece unit having a first pole piece, a second pole piece and at least two openings for charged particle beams, wherein the two openings are arranged in one row, thereby forming a lens row, and wherein the pole piece unit has an elongated shape.
Abstract:
The present invention relates to a charged particle beam device (1) for inspecting or structuring a specimen (3) comprising a charged particle beam source (5) to generate a charged particle beam (7), a focussing lens (9) to focus the charged particle beam (7) onto the specimen (3), and an aperture system (13) for defining an aperture (6) for the charged particle beam (7). The aperture system (13) includes a first member (20) to block a first portion (7a) of the charged particle beam (7) between the charged particle beam source (5) and the focussing lens (9), a second member (30) to block a second portion (7b) of the charged particle beam (7) between the charged particle beam source (5) and the focussing lens (9), first means (24) for moving the first member (20) to adjust the size of the blocked first portion (7a) of the charged particle beam (7), and second means (34) for moving the second member (30) independently from the first portion (7b). With such aperture system (13), it is possible to freely adjust the size of the aperture (6) and align it to the optical axis (8) during operation.
Abstract:
The invention provides a lens system for a plurality of charged particle beams. Therein, at least one common excitation coil for at least two lens modules is provided. The lens modules comprise an first pole piece, a second pole piece and at least one opening for a charged particle beam. The lens modules constitute a component and share the excitation coil. Thereby, raw material availability, processing of work pieces and symmetry conditions for the lens fields are improved.
Abstract:
The present invention relates to a charged particle unit for deflecting and energy-selecting charged particles of a charged particle beam. Thereby, a double-focusing sector unit for deflecting and focusing the charged particle beam and an energy-filter forming a potential is provided, whereby charged particles of the charged particles beam are redirected at the potential-saddle depending on the energy of the charged articles.
Abstract:
The invention is directed to an image forming omega filter having pole pieces with straight edges which has good local resolution and very good energy resolution. The omega filter includes four deflection regions, with deflection angles greater than 90.degree..
Abstract:
An electron beam device comprises: a beam emitter for emitting a primary electron beam; an objective electron lens for focusing the primary electron beam onto a specimen, the objective lens defining an optical axis; a beam separator having a first dispersion for separating a signal electron beam from the primary electron beam; and a dispersion compensation element. The dispersion compensation element has a second dispersion, the dispersion compensation element being adapted for adjusting the second dispersion independently of an inclination angle of the primary beam downstream of the dispersion compensation element, such that the second dispersion substantially compensates the first dispersion. The dispersion compensation element is arranged upstream, along the primary electron beam, of the beam separator.
Abstract:
A secondary charged particle detection system for a charged particle beam device is described. The detection system includes a beam splitter for separating a primary beam and a secondary beam formed upon impact on a specimen; a beam bender for deflecting the secondary beam; a focusing lens for focusing the secondary beam; a detection element for detecting the secondary beam particles, and three deflection elements, wherein at least a first deflector is provided between the beam bender and the focusing lens, at least a second deflector is provided between the focusing lens and the detection element, at least a third deflector is provided between the beam splitter and the detection element.
Abstract:
A shielding member for a charged particle beam apparatus includes a conductive substrate; and a through hole extending through the conductive substrate. The conductive substrate is comprised of a material having a specific electrical resistivity in a range from about 106 Ωcm to about 1012 Ωcm.
Abstract:
The present invention provides a charged particle beam energy width reduction system. The system comprises a first element acting in a focusing and dispersive manner in an x-z-plane; a second element acting in a focusing and dispersive manner in the x-z-plane; a charged particle selection element positioned between the first and the second element acting in a focusing and dispersive manner; and a focusing element positioned between the first and the second element acting in a focusing and dispersive manner.
Abstract:
The present invention provides a charged particle beam device. The device comprises a first lens (101; 510) generating a crossover a second lens (102; 512) positioned after the crossover and a element acting in a focusing and dispersive manner in an x-z-plane with a center of the element having essentially same z-position as the crossover. Further, a multipole element, which acts in the x-z-plane and a y-z-plane is provided. A first charged particle selection element and a second charged particle selection element are used for selecting a portion of the charged particles. Thereby, e.g. the energy width of the charged particle beam can be reduced.