Abstract:
Apparatus and associated methods relate to an array of independently-controllable laser diode bars configured to scan a linearly-structured beam of light upon a scene. Each of the independently-controllable laser diode bars is distributed along a common axis. Each of the independently-controllable laser diode bars is configured to emit a beam of light in an emission direction orthogonal to the common axis. Each of the independently-controllable laser diode bars can be energized in a sequence, thereby scanning the scene in the direction of the common axis.
Abstract:
Apparatus and associated methods relate to maximizing a signal to noise ratio of an accelerometer by inhibiting signals arising from movements of a proofmass in directions perpendicular to a direction of intended sensitivity. The direction of intended sensitivity of the accelerometer is along an axis of the proofmass. The accelerometer is rendered substantially insensitive to lateral accelerations of the proofmass by making the accelerometer axially symmetric. Two axially-asymmetric acceleration sensing devices are axially engaged in such a manner as to render the coupled sensing devices substantially axially-symmetric. In some embodiments, each acceleration sensor has an axially-thin membrane portion extending from a proofmass portion. The two acceleration sensors can be engaged in an antiparallel fashion at projecting ends of the proofmass portions. An engagement surface will be located about halfway between the axially-thin membrane portions of the two acceleration sensors, thereby causing mechanical symmetry about the engagement surface.
Abstract:
A method for producing a silicon based MEMS pressure sensor includes forming a cavity in a first (100) surface of a silicon wafer with first and second parallel (100) surfaces wherein the angle between the walls of the first cavity and the first (100) surface where they intersect the first (100) surface are greater than 90 degrees and the remaining material between the bottom of the cavity and the second parallel (100) surface comprises a flexible diaphragm. The method also includes forming a backing wafer, having a through hole, and bonding the silicon wafer to the backing wafer such that the hole in the backing wafer matches up with the cavity in the second side of the (100) silicon wafer. A dielectric layer is formed on the second side of the (100) silicon wafer and a sensing element is formed on the dielectric layer to detect pressure induced deflection of the silicon diaphragm.
Abstract:
A method for forming a pressure sensor includes forming a base of a sapphire material, the base including a cavity formed therein; forming a sapphire membrane on top of the base and over the cavity; forming a lower electrode on top of the membrane; forming a piezoelectric material layer on an upper surface of the lower electrode, the piezoelectric material layer being formed of aluminum nitride (AIN); and forming at least one upper electrode on an upper surface of the piezoelectric material layer.
Abstract:
A packaged pressure sensor assembly is disclosed that includes a pressure sensor including an upper substrate and a lower substrate bonded to one another by way of a first glass frit having a first bonding temperature, so as to define a hermetically sealed pressure sensing chamber therebetween, and a housing defining an internal cavity having a base with a support surface for supporting the pressure sensor, wherein the pressure sensor is bonded to the support surface of the base by a second glass frit having a second bonding temperature that is lower than the first bonding temperature.
Abstract:
Apparatus and associated methods relate to maximizing a signal to noise ratio of an accelerometer by inhibiting signals arising from movements of a proofmass in directions perpendicular to a direction of intended sensitivity. The direction of intended sensitivity of the accelerometer is along an axis of the proofmass. The accelerometer is rendered substantially insensitive to lateral accelerations of the proofmass by making the accelerometer axially symmetric. Two axially-asymmetric acceleration sensing devices are axially engaged in such a manner as to render the coupled sensing devices substantially axially-symmetric. In some embodiments, each acceleration sensor has an axially-thin membrane portion extending from a proofmass portion. The two acceleration sensors can be engaged in an antiparallel fashion at projecting ends of the proofmass portions. An engagement surface will be located about halfway between the axially-thin membrane portions of the two acceleration sensors, thereby causing mechanical symmetry about the engagement surface.
Abstract:
Apparatus and associated methods relate to maximizing a signal to noise ratio of an accelerometer by inhibiting signals arising from movements of a proofmass in directions perpendicular to a direction of intended sensitivity. The direction of intended sensitivity of the accelerometer is along an axis of the proofmass. The accelerometer is rendered substantially insensitive to lateral accelerations of the proofmass by making the accelerometer axially symmetric. Two axially-asymmetric acceleration sensing devices are axially engaged in such a manner as to render the coupled sensing devices substantially axially-symmetric. In some embodiments, each acceleration sensor has an axially-thin membrane portion extending from a proofmass portion. The two acceleration sensors can be engaged in an antiparallel fashion at projecting ends of the proofmass portions. An engagement surface will be located about halfway between the axially-thin membrane portions of the two acceleration sensors, thereby causing mechanical symmetry about the engagement surface.
Abstract:
A pressure sensor comprising a housing, a diaphragm wafer, and an isolator configured to absorb lateral stress. The diaphragm wafer includes a fully exposed diaphragm, a fluid contact surface, a sensing element, and a support portion, where the support portion and the contact surface define a cavity. The isolator extends laterally from the support portion to the housing. The pressure sensor is easily drainable, eliminating the buildup of particulates, and the diaphragm can be directly wire-bonded to printed circuit boards, eliminating the need for extensive electrical feedthrough.
Abstract:
Apparatus and associated methods relate to an accelerometer having first and second piezoelectric transducers that are electrically isolated but mechanically coupled one to another via a coupling member. The first piezoelectric transducer is configured to induce a mechanical deformation of the coupling member in response to an electrical excitation signal received by the first piezoelectric transducer. The second piezoelectric transducer is configured to generate an electrical response signal in response to mechanical deformation of the coupling member. The accelerometer has a self-test module configured to generate the electrical excitation signal and to receive the electrical response signal. The self-test module is further configured to generate a sensor test result based upon a comparison between the received electrical response signal and a reference signal. The self-test module may advantageously detect changes in an excitation/response relation due to time and/or environmental conditions, for example.