Abstract:
An oxide catalyst is formed by vaporizing a quantity of at least one precursor material or catalyst material thereby forming a vapor cloud. The vapor cloud is quenched forming precipitate nanoparticles. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming oxide catalysts comprises means for vaporizing a quantity of at least one precursor material or at least one catalyst material, quenching the resulting vapor cloud and forming precipitate nanoparticles. The system further comprises means for supports with the nanoparticles.
Abstract:
Disclosed herein is a process and an apparatus for producing coated catalysts. A process of the present disclosure includes providing a composition containing a liquid and a catalytically active material and/or a precursor thereof in a stock vessel, providing a support material in a vessel which is rotatable about a longitudinal axis, transporting the composition from the stock vessel through a first conduit to a spray nozzle, transporting a propellant fluid through a second conduit to the spray nozzle, atomizing the composition and propellant fluid in the nozzle to produce an aerosol that flows into the vessel and impregnates the support material present therein, heating the vessel so the liquid present in the aerosol evaporates from the support material and the finely divided support material which has been treated with catalytically active material and/or a precursor thereof is dried, and discharging the vaporized liquid from the vessel.
Abstract:
Embodiments of present inventions are directed to an advanced catalyst. The advanced catalyst includes a honeycomb structure with an at least one nano-particle on the honeycomb structure. The advanced catalyst used in diesel engines is a two-way catalyst. The advanced catalyst used in gas engines is a three-way catalyst. In both the two-way catalyst and the three-way catalyst, the at least one nano-particle includes nano-active material and nano-support. The nano-support is typically alumina. In the two-way catalyst, the nano-active material is platinum. In the three-way catalyst, the nano-active material is platinum, palladium, rhodium, or an alloy. The alloy is of platinum, palladium, and rhodium.
Abstract:
Catalyst systems and methods for making and using the same are provided. The catalyst system can include a catalyst support, wherein the catalyst support has an average particle size of about 2 microns to about 200 microns. Nanoparticles are adhered to the catalyst support, wherein the nanoparticles have an average particle size of about 2 to about 200 nanometers. A catalyst is supported on the catalyst support.
Abstract:
A metal compound catalyst is formed by vaporizing a quantity of catalyst material and a quantity of carrier thereby forming a vapor cloud, exposing the vapor cloud to a co-reactant and quenching the vapor cloud. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal compound catalysts comprises means for vaporizing a quantity of catalyst material and a quantity of carrier, quenching the resulting vapor cloud, forming precipitate nanoparticles comprising a portion of catalyst material and a portion of carrier, and subjecting the nanoparticles to a co-reactant. The system further comprises means for impregnating the of supports with the nanoparticles.
Abstract:
Provided are metal particles comprising an at least partial solid solution of rhodium and gold. Also provided is a method for producing metal particles comprising adding a boron-based reducing agent to a mixed solution containing a rhodium salt and a gold salt to produce the metal particles comprising an at least partial solid solution of rhodium and gold. Furthermore, provided are an exhaust gas purifying catalyst comprising the metal particles supported on a catalyst support and a method for producing the same.
Abstract:
The present invention discloses a confined cell structure with the entires guarded by nano-scale metal nano-particles to help confine subnano-sized metal nano-particles inside the cell. Also the present invention provides a method of forming said confined cell structure on mesoporous carbon materials using a simple impregnation process.
Abstract:
Disclosed is a visible light responsive photocatalyst that simultaneously realizes high crystallinity and refinement of primary particles. Also disclosed is a photocatalyst composed of secondary particles that have a high porosity and are aggregates of fine primary particles. Rhodium-doped strontium titanate that is a visible light responsive photocatalyst of the present invention has a primary particle diameter of not more than 70 nm and has a absorbance at a wavelength of 570 nm of not less than 0.6 and a absorbance at a wavelength of 1800 nm of not more than 0.7, each absorbance determining by measuring a diffuse reflection spectrum, the rhodium-doped strontium titanate having a high water-splitting activity as a photocatalyst.
Abstract:
Disclosed is a photocatalyst, and methods for its use, that includes a photoactive material comprising a photonic band gap and an electronic band gap, wherein the photonic band gap at least partially overlaps with the electronic band gap, and an electrically conductive material deposited on the photoactive material.
Abstract:
Disclosed is a process for the production of lower olefins by the conversion of a feed stream comprising carbon monoxide and hydrogen, and catalysts as used therein, such as a Fischer-Tropsch process. By virtue of the invention, lower olefins can be formed from synthesis gas, with high selectivity, and low production of methane. The catalysts used herein comprise an α-alumina support, and a catalytically active component that comprises iron-containing particles dispersed onto the support in at least 1 wt. %. The majority of the iron-containing particles is in direct contact with the α-alumina and is well-distributed thereon. Preferably, the iron-containing particles have an average particle size below 30 nm, and most preferably below 10 nm. The supported catalysts not only show a high selectivity, but also a high catalyst activity and chemical and mechanical stability.