Abstract:
The present invention relates to a micro electro mechanical systems (MEMS) scanner, and more particularly, to an MEMS scanner for implementing stable driving while increasing a driving angle between a fixed electrode and a driving electrode using an MEMS process. The MEMs scanner comprises a lower frame, a pair of upper frames, a pair of levers, a pair of fixed electrode portions, and a driving electrode portion.
Abstract:
The MEMS sensor of the invention has movable and fixed components for measuring acceleration in a rotational mode in a direction in-plane perpendicular to spring axis. The components include an element frame, a substrate, a proof-mass a spring connected to the proof-mass and to the substrate, and comb electrodes. The MEMS sensor is mainly characterized by an arrangement of the components causing an inherent sensitivity for measuring accelerations in a range covering longitudinal and transversal accelerations. One or more of the components are tilted compared to the element frame. The semiconductor package of the invention comprises at least one MEMS sensor.
Abstract:
Flexure bearing systems and configurations guide translational motion along a single-axis in micro and macro applications such as micro-electro-mechanical system (MEMS) devices including sensors and actuators like electrostatic comb-drive actuators. The flexure bearing systems and configurations described herein provide an improved constraint against movement (i.e., stiffness) of the primary mover in non-motion axes such as a bearing axis.
Abstract:
A cascaded micromechanical actuator structure for rotating a micromechanical component about a rotation axis is described. The structure includes a torsion spring device which, on the one hand, is attached to a mount and to which, on the other hand, the micromechanical component is attachable. The torsion spring device has a plurality of torsion springs which run along or parallel to the rotation axis. The structure includes a rotary drive device having a plurality of rotary drives which are connected to the torsion spring device in such a way that each rotary drive contributes a fraction to an overall rotation angle of a micromechanical component about the rotation axis.
Abstract:
A microelectromechanical gyroscope structure for detecting angular motion about an axis of angular motion. A drive element is suspended for one-dimensional motion in a direction of a drive axis, and a sense body carries one or more sense rotor electrodes and is coupled to the drive element with a first directional spring structure that forces the sense body to move with the drive element and has a preferred direction of motion in a direction of a sense axis. The drive element includes an actuation body and a drive frame wherein the first spring structure couples the sense body directionally to the drive frame, and a second directional spring structure that couples the drive frame to the actuation body and has a preferred direction of motion in the direction of the sense axis.
Abstract:
This invention is a novel methodology for precision metrology, sensing, and actuation at the micro- and nano-scale. It is well-suited for micro- and nano-scale because it leverages off the electromechanical benefits of the scale. The invention makes use of electrical measurands of micro- or nano-scale devices to measure and characterize themselves, other devices, and whatever the devices subsequently interact with. By electronically measuring the change in capacitance, change in voltage, and/or resonance frequency of one or more test structures, a multitude of geometric, dynamic, and material properties may be extracted with a much higher accuracy and precision than conventional methods.
Abstract:
Actuator apparatus comprising at least one moving elements, each comprising comb drive apparatus including at least first and second comb elements at least one of which is free to be in motion in a medium, and a controller controlling the motion responsive to an input signal representing a desired sound.
Abstract:
A microelectromechanical system (MEMS) device, method of operating the MEMS device, and a method of forming the MEMS device are provided. The MEMS device includes a positioning mechanism and a locking mechanism. The positioning mechanism includes a first arm structure having a first surface and a second surface; a second arm structure having a first surface and a second surface; wherein the first surface of the first arm structure faces the first surface of the second arm structure. The positioning mechanism also includes a first actuator disposed adjacent to the second surface of the first arm structure facing away from the second arm structure; and a second actuator disposed adjacent to the second surface of the second arm structure facing away from the first arm structure. The locking mechanism includes a first pair of locking elements arranged such that each locking element is disposed at two opposite side surfaces of the first arm structure between the first and second surfaces of the first arm structure; and a second pair of locking elements arranged such that each locking element is disposed at two opposite side surfaces of the second arm structure between the first and second surfaces of the second arm structure. The first and second pairs of locking elements are configured to engage with and disengage from the first and second arm structures respectively.
Abstract:
The invention relates to a microsystem having at least one micromirror (1) and at least one micromirror actuator (2) for pivoting the at least one micromirror (1) about at least one axis from a relaxed resting position, comprising a frame chip and a transparent cover (3) disposed on the frame chip, wherein the frame chip has a chip frame (10), on which the at least one micromirror (1) is articulated in an elastically pivoting manner, wherein the at least one micromirror (1) is further disposed within the chip frame (10) and in a cavity (11) that is formed between the transparent cover (3) and a carrier layer. To this end, the at least one micromirror (1) is articulated on a frame (14) pivotally about the at least one axis, the frame (14) in turn being pivotally articulated on the chip frame (10), wherein the frame (14) is permanently pivoted out of a chip plane defined by the carrier layer such that the micromirror (1) in the resting position thereof is tilted about a non-pivoting angle relative to the chip plane. The invention further relates to a method for the production of such a microsystem.
Abstract:
An electrostatic comb drive actuator for a MEMS device includes a flexure spring assembly and first and second comb drive assemblies, each coupled to the flexure spring assembly on opposing sides thereof. Each of the first and second comb assemblies includes fixed comb drive fingers and moveable comb drive fingers coupled to the flexure spring assembly and extending towards the fixed comb drive fingers. The comb drive fingers are divided equally between the first and second comb drive assemblies and placed symmetrically about a symmetry axis of the flexure spring assembly. When electrically energized, the moveable comb drive fingers of both the first and second comb drive assemblies simultaneously move towards the fixed comb drive fingers of the first and second comb drive assemblies.