Abstract:
A method of removing polysilicon in preference to silicon dioxide and/or silicon nitride by chemical mechanical polishing. The method removes polysilicon from a surface at a high removal rate while maintaining a high selectivity of polysilicon to silicon dioxide and/or a polysilicon to silicon nitride. The method is particularly suitable for use in the fabrication of MEMS devices.
Abstract:
A micromechanical component and a method for producing the component are provided. The micromechanical component includes a substrate and a micromechanical functional layer of a first material provided over the substrate. The functional layer has a first and second regions, which are connected by a third region of a second material, and at least one of the regions is part of a movable structure, which is suspended over the substrate.
Abstract:
Method for fabricating ultrathin gaps producing ultrashort standoffs in array structures includes sandwiching a patterned device layer between a silicon standoff layer and a silicon support layer, providing that the back surfaces of the respective silicon support layer and the standoff layer are polished to a desired thickness corresponding to the desired standoff height on one side and to at least a minimum height for mechanical strength on the opposing side, as well as to a desired smoothness. Standoffs and mechanical supports are then fabricated by etching to produce voids with the dielectric oxides on both sides of the device layer serving as suitable etch stops. Thereafter, the exposed portions of the oxide layers are removed to release the pattern, and a package layer is mated with the standoff voids to produce a finished device. The standoff layer can be fabricated to counteract curvature.
Abstract:
A method of fabricating a device having a desired non-planar surface or profile and device produced thereby are provided. A silicon wafer is first coated with silicon nitride, patterned, and DRIE to obtain the desired etch profile. Silicon pillars between trenches are then etched using an isotropic wet etch, resulting in a curved well. The wafer is then oxidized to null2 nullm to smooth the surface of the well, and to protect the well from an ensuing planarization process. The nitride is then selectively removed, and the wafer surface is planarized by removing the Si left in the field regions using either a maskless DRIE or CMP. Finally, the oxide is etched away to produce a wafer with a curved surface.
Abstract:
The present invention is directed to a process for forming one or more lateral nanostructures on a substrate. The process comprises the steps of: providing a substrate; depositing a first layer on the substrate; forming at least one edge on the first layer; depositing at least one separation layer on the first layer; depositing a third layer on the separation layer; and removing a portion of the separation layer and the third layer from the substrate such that a substantially planar surface is formed exposing the first layer, the separation layer, and the third layer.
Abstract:
The damascene wiring structure includes a base including a main surface provided with a groove, an insulating layer including a first portion provided on an inner surface of the groove and a second portion provided on the main surface, a metal layer provided on the first portion, a wiring portion embedded in the groove, and a cap layer provided to cover the second portion, an end portion of the metal layer, and the wiring portion. A surface of a boundary part between the first portion and the second portion includes an inclined surface inclined with respect to a direction perpendicular to the main surface. The end portion of the metal layer enters between the cap layer and the inclined surface, and in the end portion, a first surface along the cap layer and a second surface along the inclined surface form an acute angle.
Abstract:
An electroacoustic transducer includes a frame; an element movable relative to the frame, the movable element including a membrane; an internal cavity called back volume, subjected to a reference pressure and delimited by the movable element and walls belonging to the frame; in which transducer at least one of the walls delimiting the back volume includes at least one sealed cavity and in which a pressure lower than the reference pressure prevails in the at least one sealed cavity.
Abstract:
The present invention provides a new architecture of system-on-chip ultrasonic transducer array. It is based on fusion bond of two active wafers which have prefabricated CMOS integrated circuits and CMUT structures; precise thin-down of one wafer to form CMUT monocrystalline silicon membrane; and then to vertically connect CMUT array to CMOS IC layers underneath. This architecture can realize a high-density CMUT array with multiple layers of CMOS devices, such as all supporting CMOS ICs, to achieve a SOC solution. The present invention further provides a manufacturing method for above-mentioned SOC CMUT approach, and this manufacturing process can be realized in both 8 inch and 12-inch wafer manufacturing fabs. The disclosed manufacturing processes are more compatible with existing CMOS process flow, more cost-competitive for mass production.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
Semiconductor manufacturing processes include providing a first substrate having a first passivation layer disposed above a patterned top-level metal layer, and further having a second passivation layer disposed over the first passivation layer; the second passivation layer has a top surface. The processes further include forming an opening in a first portion of the second passivation layer, and the opening exposes a portion of a surface of the first passivation layer. The processes further include patterning the second and first passivation layers to expose portions of the patterned top-level metal layer and bonding a second substrate and the first substrate to each other. The bonding occurs within a temperature range in which at least the exposed portion of the first passivation layer undergoes outgassing.