Abstract:
The present invention provides a micromechanical or microoptomechanical structure. The structure is produced by a process comprising defining a structure on a single crystal silicon layer separated by an insulator layer from a substrate layer; depositing and etching a polysilicon layer on the single crystal silicon layer, with remaining polysilicon forming mechanical or optical elements of the structure; exposing a selected area of the single crystal silicon layer; and releasing the formed structure.
Abstract:
The present invention provides a fabrication process that integrates high-aspect-ratio silicon structures with polysilicon surface micromachined structures. In some embodiments the process includes forming an oxide block by etching a plurality of trenches to leave a plurality of vertical-walled silicon structures standing on the substrate, thermally and substantially completely oxidizing the vertical-walled silicon structures, and substantially filling spaces between the oxidized vertical-walled silicon structures with an oxide of silicon to form the oxide block. The process retains not only the high-aspect-ratio silicon structures possible with deep reactive ion etching (DRIE) but also the design flexibility of polysilicon surface micromachining. Using this process, polysilicon platforms have been fabricated, which are actuated by high-aspect-ratio combdrives for many applications such as x-y-z stages and scanning devices. The actuators include an asymmetric combdrive that actuates in torsional/out-of-plane motions, and a high-aspect-ratio combdrive that drives in translational motion.
Abstract:
A process for patterning dielectric layers of the type typically found in optical coatings in the context of MEMS manufacturing is disclosed. A dielectric coating is deposited over a device layer, which has or will be released, and patterned using a mask layer. In one example, the coating is etched using the mask layer as a protection layer. In another example, a lift-off process is shown. The primary advantage of photolithographic patterning of the dielectric layers in optical MEMS devices is that higher levels of consistency can be achieved in fabrication, such as size, location, and residual material stress. Competing techniques such as shadow masking yield lower quality features and are difficult to align. Further, the minimum feature size that can be obtained with shadow masks is limited to null100 nullm, depending on the coating system geometry, and they require hard contact with the surface of the wafer, which can lead to damage and/or particulate contamination.
Abstract:
A micromechanical diaphragm system including a first diaphragm and a second diaphragm and spacer elements which are arranged between the first diaphragm and the second diaphragm. At least one spacer element has a first supporting element and a second supporting element. The first supporting element faces the first diaphragm. The second supporting element faces the second diaphragm. The first supporting element and the second supporting element are connected via a spring element.
Abstract:
The present description concerns a method of manufacturing a microelectromechanical device, including the following successive steps: providing an SOI structure comprising a first semiconductor layer on an insulating layer; forming a second semiconductor layer by epitaxy on top of and in contact with the upper surface of the first semiconductor layer; transferring and bonding, by molecular bonding, a third semiconductor layer onto and in contact with the upper surface of the second semiconductor layer; and forming trenches vertically extending from the upper surface of the third semiconductor layer all the way to the upper surface of the insulating layer, said trenches laterally delimiting a mechanical element of the device.
Abstract:
The present disclosure involves forming a method of fabricating a Micro-Electro-Mechanical System (MEMS) device. A plurality of openings is formed in a first side of a first substrate. A dielectric layer is formed over the first side of the substrate. A plurality of segments of the dielectric layer fills the openings. The first side of the first substrate is bonded to a second substrate that contains a cavity. The bonding is performed such that the segments of the dielectric layer are disposed over the cavity. A portion of the first substrate disposed over the cavity is transformed into a plurality of movable components of a MEMS device. The movable components are in physical contact with the dielectric the layer. Thereafter, a portion of the dielectric layer is removed without using liquid chemicals.
Abstract:
An integrated MEMS device is provided. The integrated MEMS device comprises a circuit chip and a device chip. The circuit chip has a patterned first bonding layer disposed thereon, the bonding layer being composed of a conductive material/materials. The device chip has a first structural layer and a second structural layer, the first structural layer being connected to the second structural layer and the first bonding layer of the circuit chip, and being sandwiched between the second structural layer and the circuit chip. A plurality of hermetic spaces are enclosed by the first structural layer, the second structural layer, the first bonding layer and the circuit chip.
Abstract:
A pressure sensor is integrated into an integrated circuit fabrication and packaging flow. In one example, a releasable layer is formed over a removable core. A first dielectric layer is formed. A metal layer is patterned to form conductive metal paths and to form a diaphragm with the metal. A second dielectric layer is formed over the metal layer and the diaphragm. A second metal layer is formed to connect with formed vias and to form a metal mesh layer over the diaphragm. The first dielectric layer is etched under the diaphragm to form a cavity and the cavity is covered to form a chamber adjoining the diaphragm.
Abstract:
A pressure sensor is integrated into an integrated circuit fabrication and packaging flow. In one example, a releasable layer is formed over a removable core. A first dielectric layer is formed. A metal layer is patterned to form conductive metal paths and to form a diaphragm with the metal. A second dielectric layer is formed over the metal layer and the diaphragm. A second metal layer is formed to connect with formed vias and to form a metal mesh layer over the diaphragm. The first dielectric layer is etched under the diaphragm to form a cavity and the cavity is covered to form a chamber adjoining the diaphragm.
Abstract:
Membrane transducer structures and thin-film encapsulation methods for manufacturing the same are provided. In one example, the thin film encapsulation methods may be implemented to co-integrate processes for thin-film encapsulation and formation of microelectronic devices and microelectromechanical systems (MEMS) that include the membrane transducers.