OPTICAL COMPONENT MADE OF QUARTZ GLASS FOR USE IN ArF EXCIMER LASER LITHOGRAPHY AND METHOD FOR PRODUCING THE COMPONENT
    11.
    发明申请
    OPTICAL COMPONENT MADE OF QUARTZ GLASS FOR USE IN ArF EXCIMER LASER LITHOGRAPHY AND METHOD FOR PRODUCING THE COMPONENT 有权
    在ArF EXCIMER激光光刻仪中使用的QUARTZ玻璃的光学元件及其制造方法

    公开(公告)号:US20160002092A1

    公开(公告)日:2016-01-07

    申请号:US14769382

    申请日:2014-02-19

    Inventor: Bodo KUEHN

    Abstract: An optical component made of synthetic quartz glass includes a glass structure substantially free of oxygen defect sites and having a hydrogen content of 0.1×1016 to 1.0×1018 molecules/cm3, an SiH group content of less than 2×1017 molecules/cm3, a hydroxyl group content of 0.1 to 100 wt. ppm, and an Active temperature of less than 1070° C. The optical component undergoes a laser-induced change in the refractive index in response to irradiation by a radiation with a wavelength of 193 nm using 5×109 pulses with a pulse width of 125 ns and a respective energy density of 500 μJ/cm2 at a pulse repetition frequency of 2000 Hz. The change totals a first measured value M193nm when measured using the applied wavelength of 193 nm and a second measured value M633nm when measured using a measured wavelength of 633 nm. The ratio M193nm/M633nm is less than 1.7.

    Abstract translation: 由合成石英玻璃制成的光学部件包括基本上不含氧缺陷部位的玻璃结构,氢含量为0.1×1016〜1.0×1018分子/ cm3,SiH基含量小于2×1017分子/ cm3, 羟基含量为0.1〜100wt。 ppm,并且有效温度低于1070℃。光学组件响应于波长为193nm的辐射的照射,使用脉冲宽度为125的5×109脉冲对激光引起的折射率变化 ns,相应的能量密度为500μJ/ cm2,脉冲重复频率为2000Hz。 当使用193nm的施加波长测量时,该变化达到第一测量值M193nm,并且当使用633nm的测量波长测量时,该变化达到第二测量值M633nm。 M193nm / M633nm的比例小于1.7。

    Method for producing synthetic quartz glass and synthetic quartz glass article
    14.
    发明申请
    Method for producing synthetic quartz glass and synthetic quartz glass article 有权
    生产合成石英玻璃和合成石英玻璃制品的方法

    公开(公告)号:US20060059948A1

    公开(公告)日:2006-03-23

    申请号:US10535935

    申请日:2003-11-28

    Abstract: First of all, there is provided a production process of a synthetic quartz glass which has less impurity, has a high-temperature viscosity characteristic equal to or more than that of a natural quartz glass, and hardly deforms even in a high-temperature environment, and especially a production process of a highly heat resistant synthetic quartz glass which is free from the generation of bubbles and is dense. Secondly, there is provided a highly heat resistant synthetic quartz glass body which is easily obtained by the production process of the present invention, and especially a transparent or black quartz glass body which is free from the generation of bubbles, is dense, has high infrared absorption rate and emission rate, and has an extremely high effect for preventing diffusion of alkali metal. The process is a process of producing a highly heat resistant quartz glass body having an absorption coefficient at 245 nm of 0.05 cm−1 or more, and the silica porous body was subjected to a reduction treatment, followed by baking, thereby forming a dense glass body.

    Abstract translation: 首先,提供了杂质少,具有等于或高于天然石英玻璃的高温粘度特性的合成石英玻璃的制造方法,即使在高温环境下也几乎不变形, 特别是高度耐热的合成石英玻璃的生产过程,其不产生气泡并且致密。 其次,提供了通过本发明的制造方法容易获得的高耐热性合成石英玻璃体,特别是不产生气泡的透明或黑色石英玻璃体,具有高红外 吸收率和排放率,对防止碱金属的扩散具有极高的效果。 该方法是生产具有245nm的吸收系数为0.05cm -1以上的高耐热性石英玻璃体的工序,对二氧化硅多孔体进行还原处理,其次是 烘烤,从而形成致密的玻璃体。

    Process for making opaque quartz, for carrying out the process suitable SiO2 granulate, and component of opaque quartz glass
    16.
    发明授权
    Process for making opaque quartz, for carrying out the process suitable SiO2 granulate, and component of opaque quartz glass 有权
    制造不透明石英的方法,用于进行适合SiO 2颗粒的工艺,以及不透明石英玻璃的组分

    公开(公告)号:US06380110B1

    公开(公告)日:2002-04-30

    申请号:US09484113

    申请日:2000-01-14

    Abstract: In a known process for the production of opaque quartz glass a blank is formed from synthetic SiO2 granulate and is heated at a vitrification temperature to form a body of opaque quartz glass. In order to provide on this basis a process for the production of pure opaque quartz glass with a homogenous pore distribution, high density, high viscosity and a low tendency to devitrify, it is proposed according to the invention that the SiO2 granulate to be used is a SiO2 granulate (21; 31) composed of at least partially porous agglomerates of SiO2 primary particles, with a specific BET surface ranging from 1.5 m2/g to 40 m2/g and an apparent density of at least 0.8 g/cm3. A SiO2 granulate (21; 31) suitable for the implementation of the process is distinguished in that it is formed from at least partially porous agglomerates of SiO2 primary particles and in that it has a specific BET surface ranging from 1.5 m2/g to 40 m2/g and an apparent density of at least 0.6 g/cm3.

    Abstract translation: 在制造不透明石英玻璃的已知方法中,由合成SiO 2颗粒形成坯料,并在玻璃化温度下加热以形成不透明石英玻璃体。 为了在此基础上提供具有均匀孔分布,高密度,高粘度和低失透倾向的纯不透明石英玻璃的制备方法,根据本发明提出使用的SiO 2颗粒是 SiO 2颗粒(21; 31),其由SiO 2一次颗粒的至少部分多孔的附聚物组成,BET比表面积为1.5m 2 / g至40m 2 / g,表观密度为至少0.8g / cm 3。 适用于实施该方法的SiO 2颗粒(21; 31)的特征在于其由SiO 2一次颗粒的至少部分多孔的附聚物形成,并且其具有范围为1.5m 2 / g至40m 2的比BET表面积 / g,表观密度为0.6g / cm 3以上。

    Quartz glass, heat treating apparatus using quartz glass, and heat treating method

    公开(公告)号:US20010029006A1

    公开(公告)日:2001-10-11

    申请号:US09871979

    申请日:2001-06-04

    Abstract: A quartz glass which would not become a source for the contamination even if it contains metallic impurities. This quartz glass includes a region where a concentration of Enull center as measured by means of an electron spin resonance analysis is 3null1019 cmnull3 or more. This quartz glass can be manufactured by a method including the steps of forming an initial quartz glass by melting and quenching a raw material for quartz glass, and implanting therein an ion, which is capable of entering into an SiO2 network of the initial quartz glass and substantially incapable of externally diffusing, to increase a concentration of Enull center in at least part of the initial quartz glass. This quartz glass can be manufactured by a method making use of a quartz glass raw material containing 0.01 to 0.1% by weight of silicon, by a method of irradiating ultraviolet ray to the initial quartz glass, or by a method of giving an abrasion damage to the surface of the initial quartz glass by means of sand blast.

Patent Agency Ranking