Abstract:
A process for producing a glass substrate having a circuit pattern is disclosed. The process includes forming a thin film layer on a glass substrate and then irradiating the thin film layer with laser light to form a circuit pattern on the glass substrate; depositing a low-melting point glass having a softening point of from 450 to 630° C. on the glass substrate having the circuit pattern formed thereon; and sintering the low-melting point glass to form a low-melting point glass layer which includes the low-melting point glass sintered on the glass substrate having the circuit pattern formed thereon and which forms a compatible layer between the glass substrate and the low-melting point glass layer.
Abstract:
A ceramic multilayer substrate exhibiting reduced pealing and breakage of an internal conductor disposed between a ceramic layer serving as a base member and a ceramic layer for restricting shrinkage includes a first ceramic layer 11, a second ceramic layer 12 laminated so as to come into contact with a principal surface of the first ceramic layer 11, and an internal conductor 13 disposed between the first ceramic layer 11 and the second ceramic layer 12, a phosphorus component layer 16a is disposed in the first ceramic layer 11 with a concentration gradient in which the concentration decreases in a direction away from the internal conductor 13.
Abstract:
A mounting structure formed by bonding the electrodes of a substantially planar electronic component to the electrodes provided on the mounting surface of a circuit board includes a sealing body 5 formed between one main surface of the electronic component and the circuit board and/or on the other main surface of the electronic component. The sealing body 5 is composed of a plurality of layers having different adhesive strengths and thermal conductivities, wherein a layer having a relatively high adhesion strength is arranged in a region being in contact with either one of the electronic component and the circuit board, and a layer having a relatively high thermal conductivity is arranged in a region being in contact with none of the electronic component and the circuit board.
Abstract:
Microelectronic and optoelectronic packaging embodiments are described with underfill materials including polybenzoxazine, having the general formula:
Abstract:
A wiring substrate includes an insulating layer including a first layer and a second layer, and a conductor layer including a metal film formed on a surface of the second layer of the insulating layer such that the conductor layer includes a conductor pattern. The first layer includes resin and first inorganic particles, the second layer includes resin and second inorganic particles at the content rate that is lower than the content rate of the first inorganic particles in the first layer, and the thickness of the first layer is 90% or more of the thickness of the insulating layer. The second layer of the insulating layer includes a composite layer having the thickness in the range of 0.1 to 0.3 μm, and the composite layer includes part of the metal film in the conductor layer formed in gaps between the second inorganic particles and resin in the second layer.
Abstract:
A component-embedded substrate includes a substrate portion, an embedded electronic component, and a resin portion. The substrate portion has inner electrodes on an inner principal surface. The embedded electronic component has terminal electrodes and is mounted to the substrate portion via solder fillets adhering to the respective terminal electrodes and the respective inner electrodes. The resin portion is stacked on the substrate portion, with the embedded electronic component embedded therein. The resin portion includes a no-filler-added layer and a filler-added layer. The no-filler-added layer extends from the inner principal surface to a height which allows at least the solder fillets to be covered. The filler-added layer contains an inorganic filler and extends from an interface with the no-filler-added layer to a height which allows at least the embedded electronic component to be covered.
Abstract:
A substrate for a printed circuit board according to an embodiment of the present invention includes a base film having an insulating property, and a metal layer formed on at least one surface side of the base film. In the substrate for a printed circuit board, a plurality of fine particles are disposed between the base film and the metal layer, and the fine particles are formed of a metal the same as a main metal of the metal layer or formed of a metal compound of the main metal. The fine particles preferably have an average particle size of 0.1 nm or more and 20 nm or less. The fine particles are preferably formed of a metal oxide or a metal hydroxide. The fine particles are preferably present between the base film and the metal layer so as to form a layer. The metal layer preferably includes a metal grain layer formed by firing metal nanoparticles.
Abstract:
In a layered structure having at least a substrate and a photosensitive resin layer or cured film layer formed on the substrate and containing an inorganic filler, the content of the inorganic filler in the photosensitive resin layer or cured film layer is low on the side contacting the substrate and high on the surface side away from the substrate, so that a linear thermal expansion coefficient of the photosensitive resin layer or cured film layer as a whole is maintained as low as possible. Preferably, the inorganic filler content in the layer gradually increases continuously obliquely or stepwise from the side contacting the substrate to the surface side away from the substrate. A photosensitive dry film containing the above-mentioned photosensitive resin layer is suitable for use as a solder resist or an interlayer resin insulation layer of a printed wiring board.
Abstract:
A method of operating an imprinted electronic sensor to sense an environmental factor includes providing spatially separated micro-channels in a cured layer on a substrate. A multi-layer micro-wire is formed in each micro-channel. Each multi-layer micro-wire includes at least a conductive layer and a reactive layer exposed to the environmental factor. The conductive layer is a cured electrical conductor located only within the micro-channel and at least a portion of the reactive layer responds to the environmental factor. A controller is provided for electrically controlling first and second groups of multi-layer micro-wires, each first and second group including one or more multi-layer micro-wires. The reactive layer is exposed to the environment. The controller measures the electrical response of the first and second groups of multi-layer micro-wires. The electrical response includes at least one of the amperometric response, the resistance, the capacitance, the impedance, the complex impedance, or the inductance.
Abstract:
A circuit board is provided with a metal wiring layer 12 on at least one principal surface of a ceramic sintered body 11, wherein the above-described metal wiring layer includes a first region 12a which is in contact with the principal surface and which contains a glass component and a second region 12b which is located on the first region 12a and which does not contain a glass component, the thickness of the first region 12a is 35% or more and 70% or less of the thickness of the metal wiring layer 12, and the average grain size in the first region 12a is smaller than the average grain size in the second region 12b.