Abstract:
An electrical device can include a printed circuit board (PCB), an electrical component integrated therewith, and connectors that are each integrated with a certain edge of the PCB. Traces can provide electrical channels between the connectors and the electrical component. Some of the connectors can be integrated at a first edge of the PCB and within a first plane, and other connectors can be integrated at a second edge of the PCB and within a second plane that is distinct from the first plane.
Abstract:
A connector for a multilayered board to connect a flat cable to a middle layer of a multilayered board while minimizing the impact due to variations in the dimensional precision and strength of multilayered boards and/or preventing deformation of the multilayered board and improving contact stability. The connector includes a board-side connecting portion and a cable-side connecting portion. The board-side connecting portion includes a column-shaped terminal, and the cable-side connecting portion includes flat terminals. The column-shaped terminal protrudes from the middle layer of the multilayered board in the thickness direction. The flat terminals include resilient contact portions, contacting a side surface portion of the column-shaped terminal from the width direction of the insertion slot in response to insertion of the cable-side connecting portion into the insertion slot.
Abstract:
According to one embodiment, a lighting device for a moving body includes a substrate that has a base body having a plurality of connection sections on a side surface and a wiring pattern provided on at least one main surface of the base body; a light emitting element that is electrically connected to the wiring pattern; and an adhesive section that is provided between the base body and a body section.The connection sections are at least one of groove sections, concave sections, and convex sections.The adhesive section covers at least a part of the plurality of connection sections.
Abstract:
Mounting devices for optical devices, and related sub-assemblies, apparatuses, and methods are disclosed. The mounting devices may be employed to secure optical devices that are configured to convert optical signals to electrical signals, or electrical signals to optical signals. The mounting devices may be configured to secure optical devices to an electronics board, such as a printed circuit board (PCB) as an example. To preserve signal integrity, the mounting devices may also be configured to align the optical devices with electrical lead connections on the electronics board. The mounting devices may also be configured to improve grounding of the optical devices to provide and improve radio frequency (RF) shielding to avoid degradation of signal-to-noise (S/N) ratios from RF interference from electronic devices on the electronics board and other nearby electronic devices.
Abstract:
An electronic device includes an enclosure and a circuit board module received in the enclosure. The circuit board module includes a printed circuit board defining cutouts, connector units are arranged in the cutouts and electronically connected to the printed circuit board, creating a printed circuit board with a lower profile to allow utilization of more of the saved space above within the electronic device.
Abstract:
A method of manufacturing a concave connector substrate includes: a step of preparing a guide substrate having a guide/holding region that guides a plate-shaped connector to a connection position and a cut portion; a step of arranging and aligning two wiring substrates, each having wiring lines and through hole connection portions that are electrically connected to the wiring lines, with both surfaces of the guide substrate, and applying an adhesive to a predetermined region of the guide substrate to bond the wiring substrates to the guide substrate; a step of bending a portion of the wiring substrate toward the inside of the cut portion of the guide substrate and bringing the wiring lines disposed in the bent portion into pressure contact with the inside of the cut portion; and a step of removing a section inside the cut portion to form the guide/holding region.
Abstract:
Mounting devices for optical devices, and related sub-assemblies, apparatuses, and methods are disclosed. The mounting devices may be employed to secure optical devices that are configured to convert optical signals to electrical signals, or electrical signals to optical signals. The mounting devices may be configured to secure optical devices to an electronics board, such as a printed circuit board (PCB) as an example. To preserve signal integrity, the mounting devices may also be configured to align the optical devices with electrical lead connections on the electronics board. The mounting devices may also be configured to improve grounding of the optical devices to provide and improve radio frequency (RF) shielding to avoid degradation of signal-to-noise (S/N) ratios from RF interference from electronic devices on the electronics board and other nearby electronic devices.
Abstract:
A network interface adapted for high speed networks. The interface includes isolation circuits with a transformer containing two primary coils and two secondary coils. A wire making up each primary coil may be twisted with a wire making up a secondary. These two coils may then be co-wound on a common core. The transformer may be connected to a common mode choke. The isolation circuit may be packaged such that the transformer and coil are in a line, with isolation circuits for a plurality of pairs arranged in parallel. The interface circuit may be packaged in a connector housing, which also may be adapted for high speed performance. The housing may receive multiple isolation circuits in parallel. The housing may also include a mating contact portion in which mating contacts for signal conductors of each pair are positioned along the same side of a cavity.
Abstract:
The present disclosure relates to a circuit board including a supporting material and having conductive tracks on a top surface, wherein the circuit board has a recess in the supporting material, which opens into a lateral surface adjoining the top surface and into which an RFID microchip is inserted.
Abstract:
A soldering preform for soldering in a reducing atmosphere is substantially disc-shaped and has two soldering surfaces each for being in contact with an object to be soldered, respectively, and with at least one recess on at least one soldering surfaces for constituting a channel open to a surface of the object.