Abstract:
A printed circuit board assembly includes a printed circuit board (PCB) having an end. The end includes surfaces defining a plurality of electrically conductive notches therein. A plurality of electrically conductive pins is provided with each pin being received in an associated notch in a press-fitted manner so as to make electrical connection with the PCB.
Abstract:
An oscillator includes a circuit board including a supporting substrate (base member), a first VCXO (a first oscillator circuit), a second VCXO (a second oscillator circuit), and a ground terminal (terminal for ground). The first VCXO and the second VCXO are configured such that a second output frequency that is output from the second VCXO is higher than a first output frequency that is output from the first VCXO. The second VCXO is placed closer to the ground terminal than the first VCXO.
Abstract:
A wiring substrate includes a substrate body formed of a plate-like ceramic, having a front surface, a back surface, and a height of 0.8 mm or less; a cavity opening at the front surface and having a rectangular shape as viewed in plane; and side walls having a thickness of 0.3 mm or less between a side surface of the cavity and a side surface of the substrate body. The wiring substrate further includes an electrically conductive layer having the form of a frame and formed on the front surface to surround an opening of the cavity; a ceramic surface having the form of a frame and located adjacently to the electrically conductive layer and along the outer periphery of the front surface; and a via conductor formed in the substrate body along the side surface of the cavity between a bottom surface of the cavity and the front surface.
Abstract:
An edge launch and fabrication method wherein spaced elongated slots are formed through a circuit board. The slots are plated at least along one side thereof connecting ground planes of the circuit board thus forming spaced edge plated regions. Circuit modules are produced by singulating the circuit board along a cut line offset outwardly from the plated slot sides to form an edge launch outwardly extending from and between the spaced edge plated regions.
Abstract:
A miniaturized voltage-transforming device includes a first circuit board and a second circuit board parallel to and separated from each other by a predetermined distance so that there is no physical connection therebetween, and a transformer having a plurality of primary-side pins and a plurality of secondary-side pins, wherein the transformer is located beside the first circuit board and the second circuit board, and has its primary-side pins and secondary-side pins directly or indirectly connected to the first circuit board and the second circuit board physically, so that the transformer is electrically connected to the first circuit board and the second circuit board via the primary-side pins and the secondary-side pins.
Abstract:
A biometric sensor apparatus and method are disclosed, which may comprise a flexible substrate comprising a first side surface and a second side surface opposing the first side surface; a biometric sensor portion comprising biometric image sensing elements formed on the second side surface forming at least part of a biometric sensor array sensing capacitively induced changes induced by a biometric in the vicinity of the biometric image sensing elements; a biometric sensor controller integrated circuit mounted to the flexible substrate on one of the first side surface and the second side surface of the flexible substrate; an edge surface of the flexible substrate including at least one conductively plated perforation in the flexible substrate; and an electro-static discharge element formed on or as part of the flexible substrate and electrically connected to the at least one conductively plated perforation.
Abstract:
A multilayer ceramic capacitor includes flat inner electrodes that are laminated on each other. An interposer includes a substrate that is larger than the multilayer ceramic capacitor. A first mounting electrode to mount the multilayer ceramic capacitor is located on a first principal surface of the substrate, and a first external connection electrode for connection to an external circuit board is located on a second principal surface. A recess is located in a side surface of the interposer. A connecting conductor is located in the wall surface of the recess. The connecting conductor is located at a position spaced apart by a predetermined distance from the side surface of the interposer.
Abstract:
A cable assembly for interconnecting a plurality of circuit boards together by using a connector assembly connected to each of the circuit boards. The cable assembly includes a first cable having a first end part and a second cable having a second end part. A first periphery of the first end part has a plurality of first half vias that collectively form a column along a width direction of the connector assembly. A second periphery of the second end part has a plurality of second half vias that collectively form a column along the width direction of the connector assembly. The first and second end parts are coupled together to form a connecting unit, such that the first half vias and the second half vias are joined together to form full vias.
Abstract:
A semiconductor device housing package includes a base body having, on its upper surface, a mounting region of a semiconductor device; a frame body having a frame-like portion disposed on the upper surface of the base body, surrounding the mounting region, and an opening penetrating through from an inner side of the frame-like portion to an outer side thereof; a flat plate-like insulating member disposed in the opening, extending from an interior of the frame body to an exterior thereof; wiring conductors disposed on an upper surface of the insulating member, extending from the interior of the frame body to the exterior thereof; and a metallic film disposed on a part of the upper surface of the insulating member, the metallic film lying outside the frame body surrounding the wiring conductors.
Abstract:
An electronic device including a first ground conductor layer positioned at an underside of a first insulation layer; a second ground conductor layer positioned at an upper side of the first insulation layer; a second insulation layer positioned at an upper side of the second ground conductor layer; a first connection pattern formed on an inside wall of a first opening penetrating the first insulation layer and the second insulation layer and interconnecting the first ground conductor layer and the second ground conductor layer; a conductive member provided in the first opening and connected to the first ground conductor layer; and an electronic element mounted on the member and grounded to the member.