Abstract:
Heat transfer management apparatuses according to the present disclosure includes a composite lamina having an insulator substrate and a thermal conductor at least partially embedded in the insulator substrate, a temperature-sensitive component coupled to the composite lamina, and a temperature-insensitive component coupled to the composite lamina and positioned distally from the temperature-sensitive component. The temperature-insensitive component produces heat during operation. The thermal conductor and the insulator substrate are arranged into a targeted heat transfer region proximate to the temperature-sensitive component and a bulk region proximate to the temperature-insensitive component. The targeted heat transfer region and the bulk region are in thermal continuity with one another.
Abstract:
The present disclosure relates to a method of optimizing via cutouts, including selecting a geometry of a via cutout on a first ground reference layer adjacent to a first differential trace, the geometry selected to provide an extension region extending in the direction of the first differential trace. Additionally, the method includes the steps of selecting a geometry of the first differential trace, wherein a spacing of the first differential trace in the extension region is different from a spacing of the first differential trace outside the extension region, and selecting a radial dimension of a first and second via cutout on a second ground reference layer adjacent to and between the first and second differential traces, the radial dimension of the first via cutout and the second via cutout selected such that the second ground reference layer remains intact in the area adjacent the second differential trace.
Abstract:
In accordance with the various embodiments disclosed herein, an improved electrical connector footprint, such as on printed circuit boards (PCB), is described. For example, antipads can have a variety of sizes and pairs of differential signal traces can define centerlines that are spaced apart from each other.
Abstract:
Manufacturing circuits with reference plane voids over vias with a strip segment interconnect permits routing critical signal paths over vias, while increasing via insertion capacitance only slightly. The transmission line reference plane defines voids above (or below) signal-bearing plated-through holes (PTHs) that pass through a rigid substrate core, so that the signals are not degraded by an impedance mismatch that would otherwise be caused by shunt capacitance from the top (or bottom) of the signal-bearing PTHs to the transmission line reference plane. In order to provide increased routing density, signal paths are routed over the voids, but disruption of the signal paths by the voids is prevented by including a conductive strip through the voids that reduces the coupling to the signal-bearing PTHs and maintains the impedance of the signal path conductor.
Abstract:
A circuit substrate uses post-fed top side power supply connections to provide improved routing flexibility and lower power supply voltage drop/power loss. Plated-through holes are used near the outside edges of the substrate to provide power supply connections to the top metal layers of the substrate adjacent to the die, which act as power supply planes. Pins are inserted through the plated-through holes to further lower the resistance of the power supply path(s). The bottom ends of the pins may extend past the bottom of the substrate to provide solderable interconnects for the power supply connections, or the bottom ends of the pins may be soldered to “jog” circuit patterns on a bottom metal layer of the substrate which connect the pins to one or more power supply terminals of an integrated circuit package including the substrate.
Abstract:
A compact Ku band microwave diplexer configured as a three port surface mount component on a miniature alumina substrate. Input signals occurring at a common port having frequencies within a first pass band are passed to a second port while being isolated from signals occurring at a third port. Signals occurring at the third port are passed to the common port while being isolated from the signals at the second port. A microstrip dual spur line filter is used combined with open circuit stubs to provide enhanced second harmonic suppression on the transmit side, while using a coupled line microstrip filter on the receive side. This approach allows for compact size and automated component assembly through pick and place and reflow manufacturing techniques.
Abstract:
A multilayer printed wiring board includes a core substrate, a resin insulation layer laminated on the core substrate and a capacitor section coupled to the resin insulating layer. The capacitor section includes a first electrode including a first metal and configured to be charged by a negative charge, and a second electrode including a second metal and opposing the first electrode, the second electrode configured to be charged by a positive charge. A dielectric layer is interposed between the first electrode and second electrode, and an ionization tendency of the first metal is larger than and ionization tendency of the second metal.
Abstract:
A midplane has a first side to which contact ends of a first differential connector are connected and a second side opposite the first side to which contact ends of a second differential connector are connected. The midplane includes a plurality of vias extending from the first side to the second side, with the vias providing first signal launches on the first side and second signal launches on the second side. The first signal launches are provided in a plurality of rows, with each row having first signal launches along a first line and first signal launches along a second line substantially parallel to the first line. The second signal launches are provided in a plurality of columns, with each column having second signal launches along a third line and second signal launches along a fourth line substantially parallel to the third line.
Abstract:
A method of producing a laminate insert package includes providing a first metal layer, printing a first dielectric layer on the first metal layer, providing a second metal layer, printing a second dielectric layer on the second metal layer, and printing a dielectric spacer layer on the first dielectric layer. At least one semiconductor chip is attached to either the first or the second metal layer. A first layer assembly comprising the first metal layer, the first dielectric layer, the dielectric spacer layer and a second layer assembly comprising the second metal layer and the second dielectric layer are brought together. The first and second layer assemblies are laminated to form a laminate insert package, whereby the at least one semiconductor chip is embedded within the laminate insert package.
Abstract:
A method for manufacturing a printed wiring board includes forming an uncalcined layer containing a raw ceramic material on a first metal layer, firing the uncalcined layer formed on the first metal layer such that a high dielectric constant layer having a ceramic body calcined in a sheet form is formed on the first metal layer, forming a second metal layer on the high dielectric constant layer on the opposite side of the high dielectric constant layer with respect to the first metal layer such that a layered capacitor having the high dielectric constant layer and first and second layer electrodes sandwiching the high dielectric constant layer is formed, and disposing the layered capacitor in a main body.