Abstract:
There is provided a measurement apparatus including a light source unit configured to emit pulsed laser light used for pump light and Stokes light that excite predetermined molecular vibration of a measurement sample and for probe light that is intensity-modulated with a predetermined reference frequency and that has a same wavelength as the pump light or the Stokes light, a pulse control unit configured to cause time delay of the probe light generated by the light source unit and then to guide the pump light, the Stokes light, and the time-delayed probe light to the measurement sample, and a detection unit configured to detect transmitted light transmitted through the measurement sample or reflected light from the measurement sample. A relaxation time of the molecular vibration of the measurement sample is measured using time-resolved stimulated Raman gain spectroscopic measurement or time-resolved stimulated Raman loss spectroscopic measurement of the measurement sample.
Abstract:
A programmable, many-band spectral imager based on addressable spatial light modulators (ASLMs), such as micro-mirror-, micro-shutter- or liquid-crystal arrays, is described. Capable of collecting at once, without scanning, a complete two-dimensional spatial image with ASLM spectral processing applied simultaneously to the entire image, the invention employs optical assemblies wherein light from all image points is forced to impinge at the same angle onto the dispersing element, eliminating interplay between spatial position and wavelength. This is achieved, as examples, using telecentric optics to image light at the required constant angle, or with micro-optical array structures, such as micro-lens- or capillary arrays, that aim the light on a pixel-by-pixel basis. Light of a given wavelength then emerges from the disperser at the same angle for all image points, is collected at a unique location for simultaneous manipulation by the ASLM, then recombined with other wavelengths to form a final spectrally-processed image.
Abstract:
Color measuring systems and methods are disclosed. Perimeter receiver fiber optics are spaced apart from a central source fiber optic and receive light reflected from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
A spectral module 1 comprises a substrate 2 for transmitting light L1 incident thereon from a front face 2a, a lens unit 3 for transmitting the light L1 incident on the substrate 2, a spectroscopic unit 4 for reflecting and spectrally resolving the light L1 incident on the lens unit 3, and a photodetector 5 for detecting light L2 reflected by the spectroscopic unit 4. The substrate 2 is provided with a recess 19 having a predetermined positional relationship with alignment marks 12a, 12b and the like serving as a reference unit for positioning the photodetector 5, while the lens unit 3 is mated with the recess 19. The spectral module 1 achieves passive alignment between the spectroscopic unit 4 and photodetector 5 when the lens unit 3 is simply mated with the recess 19.
Abstract:
The invention relates to a system and a method for optical measurement of a target, wherein the target is illuminated, either actively illuminated, reflecting ambient light, or self illuminating, and a measurement light beam received from the target or through it is detected. The prior art optical measurement systems generally include mechanical filter wheels and photomultiplier tubes, which cause the equipment to be expensive, large-sized and often not sufficiently accurate and stable. The objective of the invention is achieved with a solution, in which the illuminating light beam and/or measurement light beam is led through a Fabry-Perot interferometer or a set of two or more Fabry-Perot Interferometers, and the pass band of the Fabry-Perot interferometer or a set of two or more Fabry-Perot Interferometers is controlled during the measurement of a single target. The invention can be applied in optical measurements where, for example, reflectance, absorption of fluorescence of the target is measured.
Abstract:
A spectrometer design method that corrects aberration by using crossed optical paths and minor alignment, simplifies manufacture by applying the light entrance slit and aperture on opposite sides of a transparent input block, and creates a more compact footprint by placing a 45 degree mirror or right angle prism directly in front of the detector is disclosed.
Abstract:
A spectroscopic detector includes a spectroscopic element for dispersing light, a photodetector for detecting the light dispersed by the spectroscopic element and a condensing optical system for condensing the dispersed light to the photodetector and compensating for a deviation in a detected wavelength deriving from nonlinearity of the angle of emergence generated in the spectroscopic element through chromatic aberration of magnification.
Abstract:
The present invention generally pertains to a system, method and kit for the detection and measurement of spectroscopic properties of light from a sample, or the scalable detection and measurement of spectroscopic properties of light from each sample present among multiple samples, simultaneously, wherein the system comprises: an optical train comprising a dispersing element; and an image sensor. The light detected and measured may comprise light scattered from a sample, emitted as chemiluminescence by a chemical process within a sample, selectively absorbed by a sample, or emitted as fluorescence from a sample following excitation.
Abstract:
The present invention is related to a Fourier-transform spectrometer arrangement comprising a first polarizer, a birefringent plate, a pair of birefringent wedges, a second polarizer, a photo detector, and a control unit. According to the invention, the cross sections of the two birefringent wedges of the birefringent wedge pair are similar triangles, the first wedge is fixed, the second wedge is capable of linearly movement along the side, the optic axes of the pair of birefringent wedges are parallel to each other and orthogonal to the optic axis of the birefringent plate, the polarization of the first polarizer is in 45 degrees with the optical axis of the birefringent plate, the polarization of the first polarizer is also in 45 degrees with the optical axis of the pair of birefringent wedges, the polarization of the second polarizer is parallel, or orthogonal, to the polarization of the first polarizer.
Abstract:
A spectrometer including a source emitting an electromagnetic radiation, a selection device configured for selecting a monochromatic radiation based on the electromagnetic radiation, a focusing device configured for defining a focusing point associated with a wavelength of the electromagnetic radiation emitted by the source and configured for displacing the focusing point with respect to an input of the selection device, a vessel containing a sample intended to receive the monochromatic radiation, and an analyzer of a radiation transmitted or emitted by the sample.