Abstract:
Wirings 2B1 are formed by application of heat treatment after an ink jet system is used to discharge a conductive liquid L onto a provisional substrate 5 having a predetermined repellent property, bonding an insulating layer 4B1 to the wirings 2B1 with an adhesive material 3B1 therebetween, peeling and removing the provisional substrate 5, and bonding and fixing the wirings 2B1 together with the insulating film 4B1 to a main substrate 1 by an adhesive material 3B1.
Abstract:
Wirings 2B1 are formed by application of heat treatment after an ink jet system is used to discharge a conductive liquid L onto a provisional substrate 5 having a predetermined repellent property, bonding an insulating layer 4B1 to the wirings 2B1 with an adhesive material 3B1 therebetween, peeling and removing the provisional substrate 5, and bonding and fixing the wirings 2B1 together with the insulating film 4B1 to a main substrate 1 by an adhesive material 3B1.
Abstract:
A capacitor parts of the present invention, includes a substrate, a plurality of capacitor elements arranged on the substrate and composed of a lower electrode, a dielectric layer, and an upper electrode respectively, a lower electrode rewiring layer formed over the plurality of capacitor elements and connected electrically to lower electrodes of the plurality of capacitor elements respectively to act as a common electrode, and an upper electrode rewiring layer formed over the plurality of capacitor elements and connected electrically to upper electrodes of the plurality of capacitor elements respectively to act as another common electrode, wherein the plurality of capacitor elements are connected electrically in parallel in a state of the capacitor parts, thus, the impedance is reduced in a wide high-frequency band by changing impedances among the plurality of capacitor elements.
Abstract:
A circuit board includes a first group of layers located close to a top side of the circuit board, and a second group of layers located close to an underside of the circuit board. Signals which are fed to input and output contact terminals on the top side of the circuit board are passed along at least one of the layers of the group. Signals which are fed to input and output contact terminals on the underside of the circuit board are passed along at least one of the layers of the second group. The contact-making holes for connecting the input and output contact terminals to the layers of the first and second groups are preferably formed as blind contact-making holes.
Abstract:
Solder balls such as, low melt C4 solder balls, undergo volume expansion during reflow, such as may occur during attachment of chip modules to a PCB. Where the solder balls are encapsulated, expansion pressure can cause damage to device integrity. A volume expansion region in the semiconductor chip substrate beneath each of the solder balls accommodated this volume expansion. Air-cushioned diaphgrams, deformable materials and non-wettable surfaces may be used to permit return of the solder during cooling to its original site. A porous medium with voids sufficient to accommodate expansion may also be used.
Abstract:
A system may include a first microvia pad, a second microvia pad having a projection extending in a direction toward the first microvia pad, and a microvia electrically coupled to the first microvia pad and to the second microvia pad.
Abstract:
There is provided a capacitor embedded in a substrate having a small thickness and requiring only a small space for short connection lines. The substrate-embedded capacitor comprises a substrate having an opening, a first conductive layer on the substrate, a dielectric layer on the first conductive layer, a second conductive layer on the dielectric layer, and an insulating layer formed on the second conductive layer and having an opening. In the substrate-embedded capacitor, the first conductive layer and the second conductive layer are exposed through the openings in the substrate and the insulating layer, respectively.
Abstract:
A method of forming a capacitive substrate in which first and second conductors are formed opposite a dielectric, with one of these electrically coupled to a thru-hole connection. Each functions as an electrode for the resulting capacitor. The substrate is then adapted for being incorporated within a larger structure to form a circuitized substrate such as a printed circuit board or a chip carrier. Additional capacitors are also possible.
Abstract:
A method of fabricating a printed circuit board (PCB) including embedded chips, composed of forming a hollow portion for chip insertion through a substrate, inserting the chip into the hollow portion, fixing the chip to the substrate by use of a plating process to form a central layer having an embedded chip, and then laminating a non-cured resin layer and a circuit layer having a circuit pattern on the central layer. Also, a PCB including embedded chips fabricated using the above method is provided.
Abstract:
A capacitor device of the present invention includes a substrate, a float electrode formed on the substrate, a valve metal film formed on the float electrode, a dielectric film formed on the valve metal film by applying an anodic oxidation to a part of the valve metal film, and a pair of electrodes provided in areas overlapping with two different parts of the float electrode on the dielectric film respectively.