Abstract:
A method and structure for conductively coupling a metallic stiffener to a chip carrier. A substrate has a conductive pad on its surface and an adhesive layer is formed on the substrate surface. The metallic stiffener is placed on the adhesive layer, wherein the adhesive layer mechanically couples the stiffener to the substrate surface and electrically couples the stiffener to the pad. The adhesive layer is then cured such as by pressurization at elevated temperature. Embodiments of the present invention form the adhesive layer by forming an electrically conductive contact on the pad and setting a dry adhesive on the substrate, such that the electrically conductive contact is within a hole in the dry adhesive. The electrically conductive contact electrically couples the stiffener to the pad. The curing step includes curing both the dry adhesive and the electrically conductive contact, resulting in the dry adhesive adhesively coupling the stiffener to the substrate. The electrically conductive contact may include an electrically conductive adhesive or a metallic solder. Additional embodiments of the present invention form the adhesive layer by applying an electrically conductive adhesive on the substrate, wherein after the stiffener is placed on the adhesive layer, the electrically conductive adhesive mechanically and electrically couples the stiffener to the surface of the substrate.
Abstract:
A method 10, 110 for making multi-layer circuit boards having metallized apertures 38, 40, 130, 132 which may be selectively and electrically grounded and having at least one formed air-bridge 92, 178.
Abstract:
A method 10 for making multi-layer electronic circuit boards having metallized apertures 34, 36 which may be selectively and electrically grounded or isolated from an electrical ground plane.
Abstract:
A printed circuit architecture includes a relatively thick, stiffening base of thermally and electrically conductive material, and a laminate of conductive layers including a printed circuit structure, interleaved with dielectric layers, disposed atop the base. The patterned conductive layers contain an integrated circuit structure that is configured to provide RF signaling, microstrip shielding, and digital and analog control signal leads, and DC power. Low inductance electrical connectivity among the conductive layers and also between conductive layers and the base is provided by a plurality of conductive bores. Selected bores are counter-drilled at the RF signaling layer and filled with insulating plugs, which prevent shorting of the RF signal trace layer to ground, during solder reflow connection of leads of circuit components to the RF signaling layer.
Abstract:
A process for fabricating a structure using a metal carrier and forming a double capacitor structure. The process comprises forming a first via hole through the metal carrier, forming a dielectric layer around the metal carrier and inside the first via hole, forming a second via hole through the dielectric layer and the metal carrier, and filling at least one of the via holes with conductive material. In one preferred embodiment, the process further comprises forming a third via hole through the metal carrier before the forming of a dielectric layer, wherein the dielectric layer is formed around the metal carrier, inside the first via hole, and inside the third via hole. The first via hole, the second via hole, and the third via hole are all filled with a conductive material. In one preferred embodiment, the dielectric layer comprises a top surface opposed to a bottom surface, and electrodes are formed on at least one of the top surface and the bottom surface of the dielectric layer.
Abstract:
A method for forming connections within a multi-layer electronic circuit board 10. In one non-limiting embodiment, the method includes selectively forming air bridges over portions of the circuit board 10 and selectively collapsing the air bridges with a metallurgical bonding tool, effective to interconnect layers of the circuit board 10.
Abstract:
A process for fabricating a multi-layer circuit assembly is provided comprising the following steps: (a) providing a perforate metal core; (b) applying a dielectric polymer onto all exposed surfaces of the metal core to form a conformal coating of substantially uniform thickness on all exposed surfaces of the metal core; (c) ablating the surface of the dielectric polymer in a predetermined pattern to expose sections of the metal core; (d) applying a layer of metal to all surfaces to form metallized vias through the metal core; and (e) applying a resinous photosensitive layer to the metal layer. Additional processing steps such as circuitization may be included. Circuit assemblies produced by the process of the present invention comprise component layers having high via density and thermal coefficients of expansion that are compatible with those of semiconductor chips and rigid wiring boards which may be attached as components of the circuit assembly.
Abstract:
A printed circuit device comprising, a printed circuit board having an electrically conductive heat plane associated with a surface thereof, the circuit board having an opening formed therein which exposes a ground layer or track of the circuit board, a wall defining the opening being provided with an electrically conductive coating which is electrically connected to the ground layer or track, the heat plane being provided with a cut-out defining a projection which is bent to extend into the opening, the projection being secured to said coating electrically to connect the coating and the ground layer or track to the heat plane. The invention also resides in a method of manufacturing a printed circuit device and in a heat plane for use in such a device.
Abstract:
A method for making a multi-layer electronic circuit board 136 having electroplated apertures 96, 98 which may be selectively and electrically isolated from an electrically grounded member 46 and further having selectively formed air bridges and/or crossover members 128 which are structurally supported by material 134.
Abstract:
A multilayer wiring board comprises: a metal substrate as a core, a condenser dielectric layer formed to cover the metal layer, and a condenser electrode metal layer formed to cover the condenser dielectric layer, so that a condenser is defined by the metal substrate, the condenser and the condenser electrode metal layer. The condenser dielectric layer is provided with a first contact hole to communicate with the metal substrate and the condenser electrode metal layer is provided with a second contact hole to communicate with the first contact hole, the diameter of the second contact hole being larger than that of the first contact hole. An insulating layer is formed on the condenser electrode metal layer and is provided with a via hole to communicate with the metal substrate through the second and first contact holes. A metal substrate contact metal layer formed on an inner wall of the via hole, so that the metal substrate contact metal layer comes into electrical contact with the metal substrate.