Abstract:
Methods for wavelength determination of a monochromatic beam are described. The methods involve a detector unit containing at least one variable filter and at least one pair of photo detectors. The detectors have photo sensitive regions with their areas varying with the position in one direction. The wavelength for maximum transmission of the variable filter varies in the same direction. By comparing the photo current values from the two detectors, wavelength of the incident beam is determined. Methods to construct wavelength discrimination junction photo detector pair and double barrier photo detector pair are also given.
Abstract:
A method and device for wavelength locking is provided, wherein an element having a wavelength dependent characteristic such as a Fabry Perot etalon is used to provide an output signal having an intensity that varies with wavelength. The intensity of a reference signal derived from an input signal is compared with an output from the Fabry Perot etalon to provide a feedback signal that corresponds to the frequency of the input signal. The system is calibrated before wavelength locking is performed to determine a ratio of intensities that determines a locked state or condition.
Abstract:
A top incident spectrometer includes a first distributed wavelength wedge filter region of order n.sub.1 that discriminates incoming radiation as a function of wedge location, at least one second wedge region order n.sub.2 (which region may be a graded dielectric film), and an underlying detector array. In another embodiment, a second dielectric wedge element includes a Fabrey-Perot etalon, a wedge dielectric film, or a graded index film matching the second dielectric wedge region to an underlying substrate. One or more slopes associated with wedge elements may also be varied to alter filter characteristics. Spatial characteristics may further be modified by including a dielectric material whose dielectric constant varies as a function of location. Wedge filter crosstalk is minimized by partitioning a wedge dielectric region in the lateral dimension. Another embodiment provides an edge incident spectrometer including an optical waveguide or thin film structure whose spatial optical impedance varies as a function of position. Outcoupling of optical radiation occurs as a function of wavelength along the spectrometer propagation direction. Outcoupling of optical radiation may also be made to overlying structures, or to regions within a common, preferably solid state, structure. Wedge structures may further be combined to intentionally create gaps in the spectral transmission for a filter structure. A shadow masking fabricates thin film elements having spatially varying features. A material is deposited onto a substrate using an edge to provide a shadow mask affecting the deposition stream.
Abstract:
According to the present invention there are provided spectral imaging methods for biological research, medical diagnostics and therapy comprising the steps of (a) preparing a sample to be spectrally imaged; (b) viewing the sample through an optical device, the optical device being optically connected to an imaging spectrometer, the optical device and the imaging spectrometer obtaining a spectrum of each pixel of the sample by: (i) collecting incident light simultaneously from all pixels of the sample using collimating optics; (ii) passing the incident collimated light through an interferometer system having a number of elements, to form an exiting light beam; (iii) passing the exiting light beam through a focusing optical system which focuses the exiting light beam on a detector having a two-dimensional array of detector elements, so that at each instant each of the detector elements is the image of one pixel of the sample, so that the real image of the sample is stationary on the plane of the detector array, and so that each of the detector elements produces a signal which is a particular linear combination of light intensity emitted by the pixel at different wavelengths, wherein the linear combination is a function of the instantaneous optical path difference; (iv) rotating one or more of the elements of the interferometer system, so that the optical path difference between the two coherent beams generated by the interferometer system is scanned simultaneously for all the pixels of the sample; and (v) recording signals of each of the detector elements as function of time using a recording device to form a first spectral cube of data; and (c) interpreting the first spectral cube of data using a mathematical algorithm.
Abstract:
A single-channel gas concentration measurement method and apparatus. According to the method, a radiant source is employed to generate a measuring signal, the measuring signal is subsequently directed to a measurement object containing a gas mixture to be measured, the measuring signal is subsequently bandpass filtered using at least two passband wavelengths, and the filtered measuring signals are detected by a detector. According to the invention, the bandpass filtering step is implemented by a single electrostatically tunable, short-resonator Fabry-Perot interferometer.
Abstract:
An infrared detector device is described. It is based on an infrared analog of the Fabry Perot interferometer, using one curved, fully reflecting, plate and one planar, mainly reflecting, but partially transmitting, plate. The space between these plates behaves as a resonant cavity which can be built to respond to either a broad or a narrow band of wavelengths in the general range between 1 and 15 microns. It is also possible to combine several detectors of different narrow bands in a single device. Actual detection of the radiation is based on use of thin film resistors, having a high thermal coefficient of resistance, that are thermally isolated from the other parts of the structure. Details relating to the manufacture of the devices are given.
Abstract:
A chromatic dispersion compensation device is provided in the form of an etalon having first partially reflecting mirror providing an input and output port for porting a signal into and out of the etalon cavity. A second partially reflective mirror parallel to and spaced apart from the first mirror, being more reflective than the first mirror provides a monitoring port for monitoring energy within the cavity. Means are optionally provided for controlling a parameter related to the cavity in dependence upon a signal ported from the monitoring port. Means may be provided to control a transmitting laser in dependence upon the signal ported from the monitoring port.
Abstract:
A monolithically constructed infrared, tunable Fabry-Perot cavity filter-detector for spectroscopic detection of particular substances having an absorption line in the wavelength range from 2 to 12 microns. The filter-detector has a hermetically sealed Fabry-Perot cavity that has a mirror which has an adjustable distance relative to another mirror of the cavity. The former mirror is adjusted by piezoelectric film on the mirror support or with piezoelectric stacks or wall supporting the mirror. There may be electrodes situated near the mirrors for capacitive sensing of the distance between the mirrors. Light to be filtered and detected comes in through a window wafer which may have diffractive or refractive microlenses, plus an optional spatial filter. After passing through the window wafer, the light is filtered by the tunable mirrors of the Fabry-Perot cavity. The portion of the light that is passed by the cavity is detected by an infrared microbolometer or a CCD array. The cavity and detector are hermetically sealed in a vacuum.
Abstract:
A spectral wavelength discrimination system and method for using are provided which allows the wavelength of a beam of radiation to be accurately determined using compact inexpensive optics and electronics. The system is particularly useful for identifying the emission wavelength of a multi-component marker system which includes a plurality of components having different wavelength ranges. The system comprises a wavelength selective beamsplitter, termed a Linear Wavelength Filter, that directs predetermined fractions of the beam at each wavelength into each of two output beams. The intensities of these output beams are measured. The measurements and selected system parameters, including the beamsplitter spectral characteristics and the detector sensitivity characteristics are used in a special algorithm for performing Fourier based wavelength-dispersive analysis. The unique solution of the Fourier based analysis is the wavelength of the beam of radiation. The system employs various optical components and structures to achieve the desired spatial resolution and sensitivity. Multiple channel devices and other special configurations are also described.
Abstract:
A spectrometer comprises a tunable interferometer for producing a monochromatic continuous image at an image plane and including two mirrors having substantially parallel surfaces and an adjustable spacing therebetween, a radiation detector located at the image plane for recording the image, a filter arrangement for allowing at least one predetermined range of wavelengths to pass to the detector, and a lens arrangement for collecting radiation and limiting radiation incident on the interferometer to an angle which is substantially perpendicular to the substantially parallel surfaces of the two mirrors.