Abstract:
The present invention generally relates to a method for forming a MEMS device and a MEMS device formed by the method. When forming the MEMS device, sacrificial material is deposited around the switching element within the cavity body. The sacrificial material is eventually removed to free the switching element in the cavity. The switching element has a thin dielectric layer thereover to prevent etchant interaction with the conductive material of the switching element. During fabrication, the dielectric layer is deposited over the sacrificial material. To ensure good adhesion between the dielectric layer and the sacrificial material, a silicon rich silicon oxide layer is deposited onto the sacrificial material before depositing the dielectric layer thereon.
Abstract:
A method of manufacturing an apparatus for harvesting and storing piezoelectric energy includes forming a groove at a side on a substrate. The method further includes embedding and planarizing a polymer in the groove, forming a piezoelectric energy harvesting device, which converts and stores an external vibration into electric energy, onto the substrate, and forming a piezoelectric MEMS cantilever by forming a hole at a side of the piezoelectric energy harvesting device and by removing the polymer in the groove through the hole.
Abstract:
The present invention disclosed a micro acoustic collector with a lateral cavity, comprising: a base metal layer; a movable film, an annular side wall; a lateral metal layer. The movable film faces towards the base metal layer to form a hollow space. The lateral metal layer is formed at a side of the movable film and around the movable film, fixed by the annular side wall and spaced apart from peripheral of the movable film by a distance, and the lateral metal layer faces towards the base metal layer to form a lateral cavity to assist an acoustic collection.
Abstract:
An electromechanical device may include a first substrate, a second substrate, a connector, and a protector. The connector may be formed of a first dielectric material and may be positioned between the first substrate and the second substrate. A first side of the connector may directly contact the first substrate. The protector may be formed of a second dielectric material and may directly contact a second side of the connector.
Abstract:
A MEMS chip (100) includes a silicon substrate layer (110), a first oxidation layer (120) and a first thin film layer (130). The silicon substrate layer includes a front surface (112) for a MEMS process and a rear surface (114), both the front surface and the rear surface being polished surfaces. The first oxidation layer is mainly made of silicon dioxide and is formed on the rear surface of the silicon substrate layer. The first thin film layer is mainly made of silicon nitride and is formed on the surface of the first oxidation layer. In the above MEMS chip, by sequentially laminating a first oxidation layer and a first thin film layer on the rear surface of a silicon substrate layer, the rear surface is effectively protected to prevent the scratch damage in the course of a MEMS process. A manufacturing method for the MEMS chip is also provided.
Abstract:
A hermetic package comprising a substrate (110) having a surface with a MEMS structure (101) of a first height (101a), the substrate hermetically sealed to a cap (120) forming a cavity over the MEMS structure; the cap attached to the substrate surface by a vertical stack (130) of metal layers adhering to the substrate surface and to the cap, the stack having a continuous outline surrounding the MEMS structure while spaced from the MEMS structure by a distance (140); the stack having a bottom first metal seed film (131a) adhering to the substrate and a bottom second metal seed film (131b) adhering to the bottom first seed film, both seed films of a first width (131c) and a common sidewall (138); further a top first metal seed film (132a) adhering to the cap and a top second metal seed film (132b) adhering to the top first seed film, both seed films with a second width (132c) smaller than the first width and a common sidewall (139); the bottom and top metal seed films tied to a metal layer (135) including gold-indium intermetallic compounds, layer (135) having a second height (133a) greater than the first height and encasing the seed films and common sidewalls.
Abstract:
There is provided a sensor element including: a semiconductor base member having a first main surface and a second main surface located opposite to the first main surface, and having a cavity structure formed on the second main surface side; and a detection element formed on the first main surface side in a region where the cavity structure is formed, the second main surface of the semiconductor base member including a convexly and concavely shaped portion, and a tip of a convex portion of the convexly and concavely shaped portion having a curved shape.
Abstract:
For producing a structured coating, or for carefully lifting off a coating over a sensitive region, it is proposed that a release film be applied and structured under the coating in the region which is not to be coated. In a release step, the release film is reduced in the adhesion in the region which is not to be coated and is subsequently lifted off together with the coating applied over it.
Abstract:
Systems and methods that protect CMOS layers from exposure to a release chemical are provided. The release chemical is utilized to release a micro-electro-mechanical (MEMS) device integrated with the CMOS wafer. Sidewalls of passivation openings created in a complementary metal-oxide-semiconductor (CMOS) wafer expose a dielectric layer of the CMOS wafer that can be damaged on contact with the release chemical. In one aspect, to protect the CMOS wafer and prevent exposure of the dielectric layer, the sidewalls of the passivation openings can be covered with a metal barrier layer that is resistant to the release chemical. Additionally or optionally, an insulating barrier layer can be deposited on the surface of the CMOS wafer to protect a passivation layer from exposure to the release chemical.
Abstract:
A method of producing a chip package is described. A plurality of chips is provided on a first wafer. Each chip has a cavity which opens to a first main face of the chip. The cavities are filled or covered temporarily. The chips are then singulated. The singulated chips are embedded in an encapsulation material, and then the cavities are re-exposed.