Abstract:
A spectroscopic system is described that provides at least one of focus of an excitation beam onto a sample, automatic focus of an optical system of the spectroscopic system for collecting a spectroscopic signal, and/or averaging of excitation intensity over a surface area of the sample.
Abstract:
An optical system includes a lens, a pupil relay, and an aperture stop positioned at a focal point of the lens between the lens and the pupil relay. The lens is configured to collect a plurality of light bundles. Each light bundle emanates from a field point of an object plane and has a center ray substantially parallel to an optical axis of the lens. The lens is configured to direct the center ray of each light bundle through the aperture stop and onto the pupil relay. The pupil relay is configured to image a plane of the aperture stop onto a sensor array.
Abstract:
An apparatus for receiving Raman scattering signals, includes an optic light-collection system for collecting Raman scattering lights having scattered from an object when excitation laser beams are irradiated thereto, a spectroscope including a diffraction grating, for separating the Raman scattering lights into its spectral components, and an optical path converter including at least one optical waveguide for converting lights having been collected by the optic light-collection system into slit-shaped lights in compliance with an orientation of the diffraction grating.
Abstract:
The present invention further relates to the selection of the specific filter combinations, which can provide sufficient information for multivariate calibration to extract accurate analyte concentrations in complex biological systems. The present invention also describes wavelength interval selection methods that give rise to the miniaturized designs. Finally, this invention presents a plurality of wavelength selection methods and miniaturized spectroscopic apparatus designs and the necessary tools to map from one domain (wavelength selection) to the other (design parameters). Such selection of informative spectral bands has a broad scope in miniaturizing any clinical diagnostic instruments which employ Raman spectroscopy in particular and other spectroscopic techniques in general.
Abstract:
A compact, ultra-sensitive, inexpensive NIR spontaneous Raman spectrometer is presented. High sensitivity is achieved by the use of a multi-pass cell configuration combined with the electromotive properties of silicon crystal surface. A thin layer of silicon oxide chemisorbs molecules, which stick to its surface without altering their spectroscopic signatures. This new Raman spectrometer may be used to detect less than 40 ng (≈0.5 n mol) of ammonium nitrate deposited on the silicon surface with the signal-to-noise ratio better than 50 during 0.1 s recording time and for an illuminated area of 2x10−8 m2. These results may be useful in many areas, for example the foundation of an extended project to record the dissolved NO3− ions in a large river such as the Mississippi.
Abstract:
The apparatus for reading spectral information out of image patterns includes a solid-state image sensor for taking pictures of image patterns, a unit for making one-dimensional images out of lights having reflected at the image patterns, a spectroscope introducing the one-dimensional images into the solid-state image sensor, a shutter unit located in front of the solid-state image sensor, and a synchronizer turning the shutter unit on or off in synchronization with movement of the image patterns, the spectroscope disperses lights having entered thereinto into each of wavelengths, and makes three-dimensional image spectrum which is wavelength dispersive for each of pixels in association with each of locations of the image patterns.
Abstract:
An apparatus and method for detecting Raman and photoluminescence spectra of a substance and identifying said substance by Raman and/or photoluminescence spectral characteristics of said substance are disclosed. An apparatus comprises a replaceable laser source aggregate with a laser source, a collimating system, a socket for receiving said replaceable laser source aggregate, while ensuring the operation of said apparatus with no further adjustment of a positioning of said collimating system or said laser source, a filtering system, a light dispersing system optimized for a spectral resolution and a spectral range sufficient to simultaneously obtain Raman and photoluminescence spectra of said substance, a detector, and at least one controller for processing electrical signals. The disclosed and claimed method provides for obtaining Raman and photoluminescence spectra of a substance simultaneously, for separating said spectra into components based on Raman and photoluminescence contents, for analyzing said Raman and photoluminescence contents, and for identifying said substance by utilizing a set of spectral processing methods.
Abstract:
The present invention relates to a 3-color multiplex CARS spectrometer. In the 3-color multiplex CARS spectrometer, Raman resonance is achieved for multiple molecular vibrations of a sample by the combination of a short-wavelength pump beam generated by a broadband laser light source and a long-wavelength Stokes beam generated by a stable laser light source, and another short-wavelength laser beam having a narrow linewidth is then introduced separately to serve as a probe beam that interacts with the laser-driven sample, thereby generating CARS spectral signals whose wavelength components can be resolved. Accordingly, the 3-color multiplex CARS spectrometer solves problem of the conventional 2-color multiplex CARS spectroscopy in which the wavelength decomposition of CARS signals, necessary for high spectral resolution, is not possible with broadband pump light causing the CARS spectrum distortion.
Abstract:
Systems and methods for increasing the quantum efficiency of a photocathode used in an intensified an intensified array detector with a photocathode, such as a charge-coupled device (ICCD) are presented. A quantum efficiency enhancement device is disposed in front of an ICCD and is configured to enable or facilitate an increase in the angle of incidence of incoming rays incident on the photocathode. The ICCD itself may be tilted to achieve an increased angle of incidence, and such tilting is preferably only in a direction in which pixel columns of the ICCD extend such that a plane of incidence of incoming light to the ICCD is perpendicular to a direction of wavelength dispersion. The quantum efficiency enhancement device may include re-imaging optics, an optical tilt compensator and optical coupler.
Abstract:
A sensor for a spectrometer is provided, which includes at least one optical element onto which an excitation light source beam is directed and from which a target beam is emitted towards a sample to be analyzed. The at least one optical element can move, thereby enabling the direction of the target beam to be varied.