APPARATUSES AND METHODS FOR EXAMINING THE MOVEMENT OF CONSTITUENTS WITHIN TISSUE CELLS

    公开(公告)号:US20240011903A1

    公开(公告)日:2024-01-11

    申请号:US18036360

    申请日:2021-11-10

    Abstract: Apparatuses and methods for investigating the inside of a tissue cell are disclosed. Embodiments include diffusely scattering light off a target sample, producing two crossing beams from the scattered light, and using a camera to create an image from the light. Some embodiments utilize a Fourier lens and a Fresnel biprism, and optionally include a long-coherence light source, a delay plate (which can be a polarization rotator or an optical flat), and/or a beam expander. Still further embodiments utilize a diffraction grating, a spatial filter (which may include two differently sized apertures), and a Fourier lens, and optionally include differently sized apertures in the spatial filter. Some embodiments include a transparent support and illuminating the target at an oblique angle through the transparent support. Still further embodiments utilize a low-coherence light source and/or immobilizing the sample tissue using surface bonding chemistry.

    SPATIAL SPECTROMETER
    252.
    发明公开

    公开(公告)号:US20240011832A1

    公开(公告)日:2024-01-11

    申请号:US18347908

    申请日:2023-07-06

    Inventor: Lei SUN Bing QIU

    Abstract: A metasurface spatial spectrometer includes a beam splitter, a first reflector, a second reflector, and a reception sensor. A reflective surface of the first reflector or the second reflector includes a plurality of sub-wavelength structures with different functions and arranged according to preset positions. The beam splitter is configured to: transmit a first portion of incident light and reflect a second portion of the incident light, transmit a portion of light reflected by the first reflector, and reflect a portion of light reflected by the second reflector. The first reflector is arranged at an angle of 45°, −45°, 135°, or −135° with respect to the beam splitter, and is configured to reflect the second portion of the incident light. The second reflector is arranged perpendicular to the first reflector, and is configured to reflect the first portion of the incident light.

    DEVICE AND METHOD FOR ONLINE MEASURING SPECTRUM FOR LASER DEVICE

    公开(公告)号:US20230194348A1

    公开(公告)日:2023-06-22

    申请号:US17915388

    申请日:2020-12-16

    CPC classification number: G01J3/45 G01J3/021 G01J2003/451

    Abstract: Provided are a device (4) and a method for online measuring a spectrum for a laser device. The device (4) for online measuring a spectrum for a laser device includes: a first optical path assembly (G1) and a second optical path assembly (G2), and the second optical path assembly (G2) and the first optical path assembly (G1) constitute a measurement optical path. The second optical path assembly (G2) includes: an FP etalon (15) and a grating (18). The homogenized laser beam passes through the FP etalon (15) to generate an interference fringe. The grating (18) is arranged after the FP etalon (15), or is arranged before the FP etalon (15) in the measurement optical path, and is configured to disperse the laser beam passing through the FP etalon (15). A high precision measurement in a wide range for a central wavelength of a laser beam and an accurate measurement for spectral parameters of a corresponding FWHM and E95 are achieved through an arrangement of the FP etalon and the grating “in series” in the measurement optical path. There is no moving element in the measurement optical path, the structure is simple and compact, the measurement precision is high, and the stability is high. The corresponding measurement algorithm is simple and efficient, and has an extremely high scientific research or commercial application value.

Patent Agency Ranking