Abstract:
The disclosure relates generally to methods and apparatus for spectral calibration of a spectroscopic system which includes a fiber array spectral translator. One embodiment relates to a method for obtaining a first image of a known substance using a photon detector and a fiber array spectral translator having plural fibers, wherein the first image comprises at least one pixel; providing a second image of the substance wherein the second image comprises at least one pixel; comparing the first image with the second image; and adjusting at least one pixel of the first image based on the comparison of images to thereby obtain an adjusted image.
Abstract:
A spectrometer collects background spectra during the idle time in which it is not collecting spectra from a sample. These spectra are collected over a range of exposure times, allowing the background reading on each pixel to be modeled as a function of exposure time. When sample spectra are then collected, the exposure time for the sample spectra can be used with the modeled function to compute an estimated background within the sample spectra. The estimated background can then be subtracted from the sample spectra, thereby reducing the noise therein.
Abstract:
An integrated spectral sensing engine featuring energy sources and detectors within a single package includes sample interfacing optics and acquisition and processing electronics. The miniaturized sensor is optimized for specific laboratory and field-based measurements by integration into a handheld format. Design and fabrication components support high volume manufacturing. Spectral selectivity is provided by either continuous variable optical filters or filter matrix devices. The sensor's response covers the range from 200 nm to 25 μm based on various solid-state detectors. The wavelength range can be extended by the use of filter-matrix devices. Measurement modes include transmittance/absorbance, turbidity (light scattering) and fluorescence (emission). On board data processing includes raw data acquisition, data massaging and the output of computed results. Sensor applications include water and environmental, food and beverage, chemical and petroleum, and medical analyses. These can be expanded into various field and consumer-based applications.
Abstract:
This invention comprises the means for the capture of full spectrum images in an electronic camera without the use of color primary filters to limit the spectral color gamut of the captured image. The fundamental principle of the invention is that each pixel of the image sensor acts as an independent spectrophotometer and spectral separator.Electromagnetic energy enters though a slit or collimating optic.Electromagnetic energy gets diffracted into component spectra by diffraction grating spectrophotometer for each pixel of imageElectromagnetic energy leaves diffraction grating at different angles based on wavelength of the energySpectrophotometer separates light for each pixel into its spectral components onto photodetector line array elements.Individual line array elements which are activated determine the original radiance level of the light source containing that specific wavelength region. The sum of these regions determines the spectral signature of the light at that pixel element.Many pixels arranged in a two-dimensional matrix would generate the image frame. Sequencing frame yields a full-spectrum moving image.
Abstract:
Light, such as from an analyte-wavelength converter or other optical sensor, is propagated to a detector or transmission structure with an entry surface and with output positions such as in an exit surface. For example, the position of light output by such a detector can be used to detect presence of an analyte such as a biomolecule or chemical. Or relative quantities of photons provided at positions of the exit surface can indicate analyte information such as presence, absence, quantity, or concentration. The detector or transmission structure can have a laterally varying energy transmission function, such as with a constant gradient or a step-like gradient. At the exit surface of the transmission structure, a photosensor array or position sensor can sense transmitted light or output photons, and, in response, circuitry can provide signals indicating the analyte information.
Abstract:
Methods and systems for real-time monitoring of optical signals from arrays of signal sources, and particularly optical signal sources that have spectrally different signal components. Systems include signal source arrays in optical communication with optical trains that direct excitation radiation to and emitted signals from such arrays and image the signals onto detector arrays, from which such signals may be subjected to additional processing.
Abstract:
An optical spectroscopy tool is provided. In one embodiment a highly efficient means by which moderate resolution spectroscopy may be performed in the vacuum ultraviolet (VUV) is described. In one embodiment the techniques can be used as a high throughput spectrometer to spatially disperse wavelengths in and around the VUV in such a manner as to generate a substantially flat field focal plane, suitable for use in combination with an array detector. Some embodiments utilize prism based spectrometers. Some embodiments utilize detector elements that may be movable and/or located within the spectrometer. In some embodiments, collimated light may be provided as an input to the spectrometer.
Abstract:
A passive skin detection system includes a main body which houses a collection optics system having an image splitting device, a visible light filter mechanism having a plurality of narrow band filters and an image capture system. The image capture system stores visible light data as a plurality of digital images formed from a plurality of pixels. Each of the plurality of digital images is associated with visible light passed through a respective one of the plurality of narrow band filters. An image processing system, operatively connected to the image capture system, compares relative intensities of each of the plurality of digital images to identify one or more of the plurality of pixels having an absorption bandwidth indicating a presence of skin. The processing system determines whether a person, identified by his skin, is present in any of the images captured by the detection system.