Abstract:
A multi-wavelength spectrofluorometer suitable for operation in laboratory, process control environments and in the field. The unit includes a multi-source flash tube, slits, diffraction grating arrangement(s) and other optics whereby a number of different wavelengths are available for exciting the sample. Also, a slit moving along the tubular axis of a single flash tube may be used. The excitation light is directed onto a sample and the luminescent emitted light from the sample is measured for intensity and wavelength. The resulting "signature" is compared with stored "signatures" for identification purposes. A controller with storage, keyboard and display provides interactive operation for the user. Separate memory cards with stored known component signatures and other analysis programs may be inserted into the instrument. Modules for directing the analysis to remote samples and to solid, liquid or gas samples are provided.
Abstract:
A microscopic spectrometer having a separate optical path for masking light from a sample for spectrometric measurements. In the preferred embodiment, a beam splitter is disposed behind an object lens to form two branched optical paths. One of the optical paths is provided with masks at a point of focus along the path, allowing part of the image to be masked. The second optical path allows optical throughput and observation of the entire image. These two optical paths are rejoined, and a final image is obtained for visual inspection by synthesizing the two optical paths.
Abstract:
A method and apparatus for in-process transient spectroscopic analysis of a molten metal, wherein a probe containing a pulsed high-power laser producing a pulsed laser beam having a substantially triangular pulse waveshape is immersed in the molten metal and irradiates a representative quantity of the molten metal. The pulsed laser beam vaporizes a portion of the molten metal to produce a plasma plume having an elemental composition representative of the elemental composition of the molten metal. Before the plasma plume reaches thermal equilibrium shortly after termination of the laser pulse, a spectroscopic detector in the probe detects spectral line reversals, as caused by absorption of radiation emitted by the hotter inner portion of the plasma plume to relatively coller outer portions of the plasma plume, during a short first time window. Thereafter, when the afterglow plasma is in thermal equilibrium, a second spectroscopic detector also in the probe performs a second short time duration spectroscopic measurement. A rangefinder measures and controls the distance between the molten metal surface and the pulsed laser.
Abstract:
Spectrometer apparatus, for self-calibrating a color image scanner of the line scanner or area scanner type, comprises a member, having an optical slit, movable into position on an optical axis of the scanner between its polychromatic light source and its focusable lens in a plane occupied by a color image when it is scanned. A diffraction grating is similarly movable onto the optical axis, a given distance from an image sensor of the scanner. The light source illuminates the slit and the diffraction grating disperses transmitted polychromatic light according to its wavelength, forming duplicate spectra off-axis across respective halves of the image sensor, with longer wavelengths being diverted to respectively higher angles.
Abstract:
The invention relates to an optical system for spectral analysis devices particularly for use in atomic emission spectroscopy in which the aberrations, astigmatis and coma are compensated separately, comprising two concave spherical reflectors adjacently arranged and having their vertices equidistantly located relative to a center of a dispersing member. The latter has a dispersion plane at right angles to the dispersing structure of the dispersing member and to its surface, the vertices are located in said dispersion plane. The center beams originating from an excitation light source are reflected at the reflectors in reflection planes which are at right angles to the dispersion plane. The light entrance of the optical system comprises two slits the images of which coincide in a focal plane. The center of the focal plane and the light entrance have a same distance to the dispersion plane and are located on different sides of the latter.
Abstract:
An automated chemistry-testing system for analyzing serum samples in which a controlled intensity, monochromatic light beam of substantially any desired wavelength can be selectively directed through any one of a plurality of test solutions in a spectrophotometer. The system operates at very high speed, permitting serum test solutions to be scanned with a multiplicity of wavelengths of light to provide extensive data on the characteristics of the serum. The invention also provides substantial flexibility and permits a wide variety of test to be more reliably performed.
Abstract:
An optical device having a Paschen-Runge mounting arrangement, suitable for splitting up the polychromatic light emitted when the sample to be analyzed is being excited, comprising a frame (1) having the shape of a circle sector, an inlet slit (21) illuminated by polychromatic light, a concave diffraction grating (4) which diffracts the bundle of polychromatic light coming from the inlet slit, outlet slits (51) worked into a slit-carrier (5) and selecting the monochromatic bundles coming from the grating, and detectors for measuring the light fluxes of the monochromatic bundles. The slit-carrier (5) consists of a flexible continuous metal ribbon, and the cylindrical support bearings (122), which serve as supports for the slit-carrier, form part of the frame and are situated on either side of an aperture for the passage of monochromatic bundles, the ends of this ribbon being fixed to the frame (1). The device is intended to be mounted in a direct reading emission spectrometer.
Abstract:
A slit changing device for a monochrometer comprises a slit disc forming a plurality of pairs of slits each having different widths, a pulse motor for rotating the slit disc, a control circuit for activating the pulse motor, so that any pair of the pairs of slits can be selected, and a keyboard operated to enter target slit information into the control circuit. The coupling between the slit disc and the pulse motor is slipless and backlashless. The control circuit comprises a present slit pulse counter for storing the pulse number of a presently selected slit pair and a target pulse counter for storing the pulse number of a target slit pair.
Abstract:
This invention relates to an apparatus for calibrating a slit width among calibrating apparatuses in a monochromator.There has been the problem that, although the slit width precision of the monochromator has been an important performance item, the calibration of the slit width has not hitherto been performed.This invention employs a bright-line spectrum or zero-order light for the slit width calibration. A peak is found out from among output signals of a lightdetector (20) by means of a peak decision unit (26). The peak value is stored into a memory (28). This peak value and the output of the lightdetector (20) are compared by a comparator (32). The slit width is calibrated on the basis of the quantity of wavelength scanning till the coincidence of both the values.