Abstract:
The invention involves electrospray ionization of dissolved substances at atmospheric pressure in the ion source of a mass spectrometer. A chip with a multitude of spray nozzles is proposed, where each individual spray nozzle is surrounded by several sheath gas nozzles, preferably in a symmetric arrangement, for the jet-like introduction of a sheath gas. A shared attracting-voltage electrode is positioned substantially opposite the spray nozzles. The attracting-voltage electrode may have a tapering (e.g. funnel-shaped) opening above each spray nozzle so that the sheath gas jets are forced to closely envelop the spray jet, which is comprised of ions and very fine droplets. Heavier ions and droplets are thus prevented from discharging on the surfaces of the openings of the attracting-voltage electrode. Special measures can be taken to make all spray nozzles spray uniformly and to supply them with substance peaks from chromatographic or electrophoretic separators as simultaneously as possible.
Abstract:
An electrostatic atomizer (100) includes a spray electrode (1), a reference electrode (2), a control circuit (24) for controlling a value of a current at the reference electrode (2), and a high-voltage generator (22) for applying a voltage between the spray electrode (1) and the reference electrode (2). The control circuit (24) controls the value of the current at the reference electrode (2) so that the value of this current can be higher than a spray current corresponding to a prescribed spray amount of a substance.
Abstract:
A spray device includes a nozzle that forms a channel for supplying liquid to at least one opening for spraying the liquid outside the device, and, close to the opening, a first and a second electrode arranged in such a way as to inject electric charges into the liquid. The edge of the opening includes, on one side of the channel, at least one projecting end of the first electrode that projects into the channel and is to be brought into contact with the liquid, and on the other side of the channel, an electrically insulating nozzle body in which the second electrode is embedded adjacently to the first electrode, in such a way that the intensity of the electrostatic field in the or each projecting end is maximized.
Abstract:
The present invention is directed to a multiplexed system for electrospraying cooling fluid to produce electrically charged droplets essentially uniform in size for cooling applications. The system comprise a preferably microfabricated fluid distributor consisting of multiple nozzles/atomizers from which the droplets are dispersed, an extractor electrode consisting in an electrically conductive plate with multiple holes coaxial with the nozzles and a third electrode consisting of either the surface to be cooled or another conductive material in contact with said surface. The system provides highly efficient cooling by avoiding the droplet rebound, when the charged droplets are pinned on the surface to be cooled by the electric image force. Testing of a prototype system demonstrated a heat flux removal of 96 W/cm2 with a remarkable cooling efficiency reaching 97%. Applications of the invention pertain to the effective removal of high heat flux from microelectronic chips or similar devices with cooling requirements.
Abstract translation:本发明涉及一种用于电喷雾冷却流体的多路复用系统,以产生基本上尺寸均匀的用于冷却应用的带电液滴。 该系统包括由多个喷嘴/雾化器组成的优选微加工流体分配器,液滴从该喷嘴/雾化器分散,提取器电极,其由具有与喷嘴同轴的多个孔的导电板组成,第三电极由要冷却的表面或 与所述表面接触的另一导电材料。 该系统通过避免液滴回弹而提供高效的冷却,当带电的液滴被固定在要通过电子影像力冷却的表面上时。 原型系统的测试显示了96 W / cm2的热通量去除,显着的冷却效率达到97%。 本发明的应用涉及从具有冷却要求的微电子芯片或类似装置有效去除高热通量。
Abstract:
An electrostatic atomization device that prevents the cooling capability from being lowered due to contact of an atomization electrode with another ember, while effectively preventing surplus production of condensed water that would destabilize discharging at the distal end of the atomization electrode. the electrostatic atomization device includes an atomization electrode having a cylindrical electrode body and a base which is informed at a basal end of the electrode body and has a larger diameter than the electrode from the base to produce condensed water on the atomization electrode. Voltage is applied to the atomization electrode when the condensed water is produced to generate charged fine water droplets. A partition plate includes an insertion hole that receives the electrode body of the atomization electrode. The partition plate and the base of the atomization electrode form a water collection region in between.
Abstract:
Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.
Abstract:
A method of forming a material structure from structural units contained within a liquid solution in a spray head is described. The liquid solution includes a solvent and a solute, the solute comprising a plurality of the structural units, the structural units including monomer units, oligomer units, or combinations thereof. The method comprises forming droplets of the liquid solution including the structural units, and spraying the droplets on a substrate, thereby substantially increasing the reactivity of the structural units within the droplets relative to the structural units within the liquid solution in the spray head. The increase in reactivity can result from the droplets containing an excess of a particular ion, the ion excess resulting from a voltage applied to conductive walls of the device which dispenses the droplets. The material structure is then formed on the substrate from the more highly reactive structural units within the droplets.
Abstract:
In an electrostatic spray ionization method for spraying a liquid layer from an insulating plate 2, the plate is arranged between two electrodes 1, 4. A constant high voltage power supply 3 is provided and an electric circuit is used to charge and discharge locally a surface of the liquid layer 7 on the insulating plate 2 by applying the power supply between the electrodes 1, 4.
Abstract:
A spraying device for producing a spray of particles in a carrier gas at ambient pressure, includes a storage volume for a liquid substance; at least one nozzle having an inlet and an outlet, the nozzle inlet fluidly communicating with the storage volume; a counter electrode; an electric supply coupled between the at least one nozzle and counter electrode for providing a first potential and create a first electric field between the nozzle outlet and the counter electrode. The device further includes at least one discharge electrode coupled to the electric supply for providing a second potential between the discharge electrode and the counter electrode, the polarity of the second potential being opposite to the polarity of the first potential. The at least one nozzle and the at least one discharge electrode are arranged adjacent and parallel to each other and facing the counter electrode from a substantially same direction.
Abstract:
A high dielectric contrast composition for particle formation that includes a high dielectric solvent, and a polymer dissolved into the high dielectric solvent. A method of forming particles including dissolving a polymer in a high dielectric solvent to form a high dielectric composition, and dielectrophoretically spinning the high dielectric composition in an electric field to form particles.