Abstract:
A method and system for treating a substrate using a ballistic electron beam is described, whereby the radial uniformity of the electron beam flux is adjusted by modulating the source radio frequency (RF) power. For example, a plasma processing system is described having a first RF power coupled to a lower electrode, which may support the substrate, a second RF power coupled to an upper electrode that opposes the lower electrode, and a negative high voltage direct current (DC) power coupled to the upper electrode to form the ballistic electron beam. The amplitude of the second RF power is modulated to affect changes in the uniformity of the ballistic electron beam flux.
Abstract:
Coated articles may comprise one or more coating layers, including water resistant coatings. A method comprises applying such coating layers by treating the article substrate by one or more methods selected from flame treatment, corona treatment, ionized air treatment, plasma air treatment and plasma arc treatment and dip, spray or flow coating. Additionally, a method comprises injection molding a first substrate material to form an article, treating the article surface by one or more methods selected from flame treatment, corona treatment, ionized air treatment, plasma air treatment and plasma arc treatment, and overmolding the article substrate with one or more barrier materials.
Abstract:
A method of forming a thin film on a substrate to fabricate a microelectronic device, a microelectronic device comprising a thin film deposited according to the method, and a system comprising the microelectronic device. The thin film may include on of a low k thin film, a thin film comprising photoresist, and a sacrificial polymer. The method comprises dispersing a precursor preparation into a spray of charged droplets through subjecting the liquid precursor preparation to electrostatic forces; directing the charged droplets to move toward the substrate; and allowing the charged droplets to generate a beam of gas-phase ions as the charged droplets move toward the substrate. The method further includes directing the gas-phase ions to impinge upon the substrate to deposit the thin film thereon to yield a deposited thin film on the substrate.
Abstract:
Multi-level structures including a first layer with a parylene polymer layer deposited thereon. The parylene polymer layer has the structure: ##STR1## m is an integer having a value of 0, 1, 2, 3 or 4, and z is greater than 1. G is a halogen, an alkyl group, a cyclo hydrocarbon, an alkylene group or an alkylyne group having the general formula C.sub.n H.sub.y X.sub.w. X is a halogen, and n is an integer greater than zero. The sum of y and w is at most equal to a 2n+1. The parylene polymer layer can have a zinc impurity level of about 66 parts per billion or less. The parylene polymer layers are formed by a process in which monomers are formed outside of a deposition zone of a vacuum chamber. The monomers may be prepared by a process in which a parylene dimer is vaporized and subsequently pyrolized. The process may further include the step of passing the vapor through a post-pyrolysis zone prior to depositing the monomer on the substrate.
Abstract translation:多级结构包括沉积有聚对二甲苯聚合物层的第一层。 聚对二甲苯聚合物层具有如下结构:m是数值为0,1,2,3或4的整数,且z大于1. G是卤素,烷基,环烃, 亚烷基或具有通式C n H y X w的烷基。 X是卤素,n是大于零的整数。 y和w的和最多等于2n + 1。 聚对二甲苯聚合物层可以具有约十六分之一或十六分之一以下的锌杂质水平。 聚对二甲苯聚合物层通过在真空室的沉积区域的外部形成单体的方法形成。 单体可以通过将聚对二甲苯二聚体蒸发并随后热解的方法制备。 该方法还可以包括在将单体沉积在基材上之前使蒸气通过后热解区的步骤。
Abstract:
Embodiments relate to surface treating a substrate, spraying precursor onto the substrate using supercritical carrier fluid, and post-treating the substrate sprayed with the precursor to form a layer with nanometer thickness of material on the substrate. A spraying assembly for spraying the precursor includes one or more spraying modules and one or more radical injectors at one or more sides of the spraying module. A differential spread mechanism is provided between the spraying module and the radical injectors to inject spread gas that isolates the sprayed precursor and radicals generated by the radical injectors. As relative movement between the substrate and the spraying assembly is made, portions of the substrate is exposed to first radicals, sprayed with precursors either one of the spraying modules or both spraying modules using supercritical carrier fluid, and then exposed to second radicals again.
Abstract:
In the present invention, a conductive film having low resistance is formed on a substrate, said film having excellent storage stability and high dispersion stability as an ink. A copper oxide ink (1) contains a copper oxide (2), a dispersant (3), and a reducing agent. The content of the reducing agent is in the range of formula (1), and the content of the dispersant is in the range of formula (2). (1) 0.00010≤(reducing agent mass/copper oxide mass)≤0.10 (2) 0.0050≤(dispersant mass/copper oxide mass)≤0.30 The reducing agent content promotes the reduction of copper oxide to copper during firing, and promotes the sintering of copper.
Abstract:
A method for coating a support with an adhesion primer for improving the connection between the support and an active outer layer. To this end, the coating of the support with a layer of adhesion primer is carried out with an aqueous dispersion including (i) particles of at least one acrylic and/or methacrylic polymer having either a gel content of less than 50 wt. % and an acrylic and/or methacrylic acid copolymer content of at least 10 wt. %, or a gel content of at least 50 wt. %, and (ii) at least one cross-linking agent in an aqueous solution, that can allow interfacial cross-linking and leads to a residual content of free acid functions of the surface copolymer(s) of at least 5 wt. %.
Abstract:
A fabrication assembly comprises an apparatus that receives a composite substrate and a glass substrate having a surface with a release coating layer. A resin layer is deposited between the composite and glass substrates such that a first portion of the resin layer is positioned adjacent to a surface of the composite substrate and a second portion of the resin layer is positioned adjacent to the surface with the release coating layer to prevent aperture(s) from forming. A curing of the resin layer is conducted using electromagnetic radiation. A post-processing chamber receives the resin layer positioned between the composite substrate and the glass substrate and conducts another curing of the resin layer. The resin layer and the composite substrate are released from the glass substrate. Another deposition apparatus receives the resin layer and the composite substrate. A metallic coating is deposited to form a composite mirror object.
Abstract:
An undercoat agent including a block copolymer having a plurality of blocks bonded formed on a substrate. The undercoat agent contains a resin component that includes a structural unit having an aromatic ring and a structural unit having no aromatic ring, and the resin component includes a group which can interact with the substrate and does not include a 3 to 7-membered, ether-containing cyclic group; and a method of forming a pattern of a layer containing a block copolymer. The method includes applying an undercoat agent to a substrate to form a layer containing the undercoat agent; forming a layer containing a block copolymer having multiple blocks bonded on a surface of the layer containing the undercoat agent, followed by a phase separation of the layer containing the block copolymer; and selectively removing a phase containing at least one block of multiple blocks constituting the block copolymer.
Abstract:
One embodiment of the deposit removal method includes: preparing a substrate having a pattern on which a deposit is deposited, the pattern being formed by etching; exposing the substrate to a first atmosphere containing hydrogen fluoride gas; exposing the substrate to oxygen plasma while heating after the step of exposing the substrate to the first atmosphere; and exposing the substrate to a second atmosphere containing hydrogen fluoride gas to remove the deposit on the substrate after the step of exposing the substrate to the oxygen plasma.