Abstract:
Trapped sacrificial structures and thin-film encapsulation methods that may be implemented to manufacture trapped sacrificial structures such as relative humidity sensor structures, and spacer structures that protect adjacent semiconductor structures extending above a semiconductor die substrate from being contacted by a molding tool or other semiconductor processing tool in an area of a die substrate adjacent the spacer structures.
Abstract:
Methods and structures that may be implemented in one example to co-integrate processes for thin-film encapsulation and formation of microelectronic devices and microelectromechanical systems (MEMS) such as sensors and actuators. For example, structures having varying characteristics may be fabricated using the same basic process flow by selecting among different process options or modules for use with the basic process flow in order to create the desired structure/s. Various process flow sequences as well as a variety of device design structures may be advantageously enabled by the various disclosed process flow sequences.
Abstract:
A MEMS device is provided. The MEMS device includes a substrate having at least one contact, a first dielectric layer disposed on the substrate, at least one metal layer disposed on the first dielectric layer, a second dielectric layer disposed on the first dielectric layer and the metal layer and having a recess structure, and a structure layer disposed on the second dielectric layer and having an opening. The opening is disposed on and corresponds to the recess structure, and the cross-sectional area at the bottom of the opening is smaller than the cross-sectional area at the top of the recess structure. The MEMS device also includes a sealing layer, and at least a portion of the sealing layer is disposed in the opening and the recess structure. The second dielectric layer, the structure layer, and the sealing layer define a chamber.
Abstract:
A micromechanical pressure sensor device and a corresponding manufacturing method. The micromechanical pressure sensor device is equipped with a sensor substrate; a diaphragm system that is anchored in the sensor substrate and that includes a first diaphragm and a second diaphragm situated spaced apart therefrom, which are circumferentially connected to one another in an edge area and enclose a reference pressure in an interior space formed in between; and a plate-shaped electrode that is suspended in the interior space and that is situated spaced apart from the first diaphragm and from the second diaphragm and forms a first capacitor with the first diaphragm and forms a second capacitor with the second diaphragm. The first diaphragm and the second diaphragm are designed in such a way that they are deformable toward one another when acted on by an external pressure.
Abstract:
A method of forming a MEMS device includes providing a substrate having a device stopper. The device stopper is integral to the substrate and formed of the substrate material. A thermal dielectric isolation layer may be arranged over the device stopper and the substrate. A device cavity may be formed in the substrate and the thermal dielectric isolation layer. The thermal dielectric isolation layer and the device stopper at least partially surround the device cavity. An active device layer may be formed over the thermal dielectric isolation layer and the device cavity.
Abstract:
A micromechanical component for a sensor or microphone device. An electrode surface of a first electrode structure is aligned with a second electrode structure. A substructure of the first electrode structure is entirely made of at least one electrically conductive material. The electrode surface and an opposite surface of the first electrode structure are outer surfaces of the substructure. A stop structure protruding from the electrode surface towards the second electrode structure is formed on the first electrode structure. The first electrode structure includes an insulating region which extends from the electrode surface to the opposite surface of the first electrode structure. The stop structure is formed either as a projection of the at least one insulating region protruding from the electrode surface towards the second electrode structure or is bordered by the at least one insulating region.
Abstract:
A method for manufacturing a microelectromechanical systems microphone comprises depositing a membrane on a first sacrificial layer on a substrate, releasing the membrane by removing the first sacrificial layer, depositing a resist layer on the membrane, and patterning the resist layer to expose the membrane, such that at least one section of resist layer remains at at least one edge of the membrane to form an anchor. A microphone manufactured by this method is also provided. There is also provided a method for manufacturing a microelectromechanical systems microphone comprising depositing a membrane on a first sacrificial layer deposited on a substrate, releasing the membrane by removing at least the first sacrificial layer, depositing a resist layer on membrane, patterning the resist layer to expose an edge of the membrane, and forming an anchor at the exposed edge of the membrane. A microphone manufactured by this method is also provided.
Abstract:
A method of manufacturing a semiconductor structure includes following operations. A first substrate is provided. A plate is formed over the first substrate. The plate includes a first tensile member, a second tensile member, a semiconductive member between the first tensile member and the second tensile member, and a plurality of apertures penetrating the first tensile member, the semiconductive member and the second tensile member. A membrane is formed over and separated from the plate. The membrane include a plurality of holes. A plurality of conductive plugs passing through the plate or membrane are formed. A plurality of semiconductive pads are formed over the plurality of conductive plugs. The plate is bonded to a second substrate. The second substrate includes a plurality of bond pads, and the semiconductive pads are in contact with the bond pads.
Abstract:
Semiconductor devices with enclosed cavities and methods for fabricating semiconductor devices with enclosed cavities are provided. In an embodiment, a method for fabricating a semiconductor device with a cavity includes providing a substrate terminating at an uppermost surface and forming a sacrificial structure over the uppermost substrate of the substrate. The method includes forming a device structure overlying a lower portion of the sacrificial structure, overlying the uppermost surface of the substrate, and underlying an upper portion of the sacrificial structure. The method also includes depositing a permeable layer over the sacrificial structure, the device structure and the substrate. Further, the method includes etching the sacrificial structure through the permeable layer to form the cavity, wherein the cavity has an outer surface completely bounded by the substrate, the device structure, and the permeable layer.
Abstract:
Membrane transducer structures and thin-film encapsulation methods for manufacturing the same are provided. In one example, the thin film encapsulation methods may be implemented to co-integrate processes for thin-film encapsulation and formation of microelectronic devices and microelectromechanical systems (MEMS) that include the membrane transducers.