Abstract:
A method of fabricating a micro-electrical-mechanical system (MEMS) apparatus on a substrate comprises the steps of processing the substrate so as to fabricate an electronic circuit; depositing a first electrode that is operably coupled with the electronic circuit; depositing a membrane so that it is mechanically coupled to the first electrode; applying a sacrificial layer; depositing a structural layer and a second electrode that is operably coupled with the electronic circuit so that the sacrificial layer is disposed between the membrane and the structural layer so as to form a preliminary structure; singulating the substrate; and removing the sacrificial layer so as to form a MEMS structure, in which the step of singulating the substrate is carried out before the step of removing the sacrificial layer.
Abstract:
An electromechanical element includes a mechanically movable element through a hollow formed on a substrate, and a plurality of holes formed in the movable element. In the electromechanical element, the plurality of holes are arranged such that at least two holes are in a same line, at least one hole is in another line located adjacent to the one line with at least two holes, and a distance between one of the holes arranged in the same line and the other hole located at the closest position from the one of the two holes arranged in the same line is longer than a distance between the holes adjacently arranged in the same line.
Abstract:
Various embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer. In other embodiments, electrochemically fabricated structures are formed on dielectric substrates.
Abstract:
An electromechanical element includes a mechanically movable element through a hollow formed on a substrate, and a plurality of holes formed in the movable element. In the electromechanical element, the plurality of holes are arranged such that at least two holes are in a same line, at least one hole is in another line located adjacent to the one line with at least two holes, and a distance between one of the holes arranged in the same line and the other hole located at the closest position from the one of the two holes arranged in the same line is longer than a distance between the holes adjacently arranged in the same line.
Abstract:
A microelectromechanical system (MEMS) switch having a high-resonance-frequency beam is disclosed. The MEMS switch includes first and second spaced apart electrical contacts, and an actuating electrode. The beam is adapted to establish contact between the electrodes via electrostatic deflection of the beam as induced by the actuating electrode. The beam may have a cantilever or bridge structure, and may be hollow or otherwise shaped to have a high resonant frequency. Methods of forming the high-speed MEMS switch are also disclosed.
Abstract:
The present invention provides a micromechanical or microoptomechanical structure. The structure is produced by a process comprising defining a structure on a single crystal silicon layer separated by an insulator layer from a substrate layer; depositing and etching a polysilicon layer on the single crystal silicon layer, with remaining polysilcon forming mechanical or optical elements of the structure; exposing a selected area of the single crystal silicon layer; and releasing the formed structure.
Abstract:
A method for fabricating a micromechanical component, in particular a surface-micromechanical acceleration sensor, involves preparing a substrate and providing an insulation layer on the substrate, in which a patterned circuit trace layer is buried. A conductive layer, including a first region and a second region, is provided on the insulation layer, and a movable element is configured in the first region by forming a first plurality of trenches and by using an etching agent to remove at least one portion of the insulation layer from underneath the conductive layer. A contact element is formed and electrically connected to the circuit trace layer in the second region by configuring a second plurality of trenches, and the resultant movable element is encapsulated in the first region. The second plurality of trenches for forming the contact element in the second region is first formed after the encapsulation of the movable element formed in the first region.
Abstract:
A high temperature resist process is combined with microlithographic patterning for the production of materials, such as diamond films, that require a high temperature deposition environment. For diamond films, a high temperature silicon nitride resist can be used for microlithographic patterning of a silicon substrate to provide a uniform distribution of diamond nucleation sites and to improve diamond film adhesion to the substrate. A fine-grained nucleation geometry, established at the nucleation sites, is maintained as the diamond film is deposited over the entire substrate after the silicon nitride resist is removed. The process can be extended to form surface relief features, such as "moth eye" surfaces, and microstructures of fine-grained polycrystalline diamond, such as rotatable microgears and surface relief patterns, that have the desirable characteristics of hardness, wear resistance, thermal conductivity, chemical inertness, anti-reflectance, and a low coefficient of friction.
Abstract:
A sensor device, such as a biosensor, may comprise a polymer substrate, which is structured so as to form sets of microneedles and respective vias. The microneedles extend, each, from a base surface of the substrate. Each of the vias extends through a thickness of the substrate, thereby forming a corresponding set of apertures on the base surface. Each of the apertures is adjacent to a respective one of the microneedles. The device further may comprise two or more electrodes, these including a sensing electrode and a reference electrode. Each electrode may comprise an electrically conductive material layer that coats a region of the substrate, so as to coat at least some of the microneedles and neighboring portions of said base surface. Related devices, apparatuses, and methods of fabrication and use of such devices may be provided.
Abstract:
A semiconductor device comprises a structured metal layer. The structured metal layer lies above a semiconductor substrate. In addition, a thickness of the structured metal layer is more than 100 nm. Furthermore, the semiconductor device comprises a covering layer. The covering layer lies adjacent to at least one part of a front side of the structured metal layer and adjacent to a side wall of the structured metal layer. In addition, the covering layer comprises amorphous silicon carbide.