Abstract:
The invention relates to an apparatus and method for optically analyzing samples contained in sample sites of a sample holder by means of fluorescence. The apparatus comprises a first light source comprising a plurality of individual light sources having narrow wavelength bands, means for further limiting wavelength bands of the light emitted by the individual light sources, means for guiding the reduced-wavelength light to the sample sites of the sample holder, and a detector for detecting light from the sample sites. According to the invention said means for further reducing the wavelength bands emitted by the individual light sources comprise a wavelength-tunable single monochromator. The invention allows manufacturing of a microplate reader having the capability for fluorescence measurements at a continuous wavelength range, while maintaining the cost of the device at a reasonable level.
Abstract:
Proposed is a defect inspection method whereby: illuminating light having a substantially uniform illumination intensity distribution in one direction of a sample surface irradiated on the sample surface; multiple scattered light components, which are output in multiple independent directions, are detected among the scattered light from the sample surface and multiple corresponding scattered light detection signals are obtained; at least one of the multiple scattered light detection signals is processed and the presence of defects is determined; at least one of the multiple scattered light detection signals that correspond to each of the points determined by the processing as a defect is processed and the dimensions of the defect are determined; and the position and dimensions of the defect on the sample surface, at each of the points determined as a defect, are displayed.
Abstract:
A fuel injector for a gas turbine combustor is disclosed which includes a feed arm having a flange for mounting the injector within the combustor and a fuel nozzle depending from the feed arm for injecting fuel into the combustor for combustion. An optical sensor array is operatively associated with the fuel nozzle for observing combustor flame characteristics. The optical sensor array includes a plurality of sapphire rods positioned to be close enough to the combustor flame to oxidize soot deposits thereon.
Abstract:
A device for detecting impurities in a noble gas includes a detection chamber and a source of pulsed ultraviolet light. The pulse of the ultraviolet light is transferred into the detection chamber and onto a photocathode, thereby emitting a cloud of free electrons into the noble gas within the detection chamber. The cloud of electrons is attracted to the opposite end of the detection chamber by a high positive voltage potential at that end and focused onto a sensing anode. If there are impurities in the noble gas, some or all of the electrons within the cloud will bond with the impurity molecules and not reach the sensing anode. Therefore, measuring a lower signal at the sensing anode indicates a higher level of impurities while sensing a higher signal indicates fewer impurities. Impurities in the range of one part per billion can be measured by this device.
Abstract:
A multi-channel fluorescence measuring optical system and a multi-channel fluorescence sample analyzer using the optical system are provided. The multi-channel fluorescence measuring optical system, which irradiates light onto a plurality of sample channels and detecting fluorescence radiated from samples, includes: a light source; an integrator for giving the light irradiated from the light source a uniform intensity distribution; a sample holder having a plurality of sample channels on which the samples are mounted, wherein the samples are exited by the light emitted from the integrator; and a beam splitter between the integrator and the sample holder for dividing the incident light in a predetermined ratio. Since the light intensities of fluorescence images are detected using optical fiber bundles and photodiodes, the manufacturing cost can be greatly reduced, and the optical system can be miniaturized.
Abstract:
The optical system of the present invention comtemplates directing a beam of radiant energy to either an aperture beam splitter or polarizing beam splitter. Radiant energy from the beam splitter forms a first remote image at an entrance to an image scrambler so that any image information which the beam contains is destroyed. The output of the scrambler fills the full aperture of a focusing objective that reproduces the image of the output of the scrambler onto a sample. A mask, positioned at a remote image between the output of the scrambler and focusing objective, determines the geometrical shape of the sample image. The focusing objective images the radiant energy that is reflected from the sample to a second remote image at the scrambler so that the scrambler destroys image information while retaining spectroscopic information. The beam splitter reflects a portion of the radiant energy from the scrambler to the detector. The absence of image information in the radiant energy from the sample reduces measurement errors by producing a predictable dispersion of radiant energy at the detector.
Abstract:
An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined.
Abstract:
A multi-wavelength time-sharing apparatus usable in various different configurations of optical measuring equipment to provide a plurality of time-shared optical channels and including appropriate circuitry. The apparatus employs a turbine-driven filter wheel having a shaft position-encoding arrangement consisting of a hollow shaft portion which is internally illuminated. The hollow shaft portion has two sets of spaced apertures cyclically communicating with respective angularly spaced pairs of externally fixedly mounted phototransistors which are sequentially illuminated as the shaft portion rotates and which produce timing pulses which drive Schmitt triggers, which, in a typical embodiment, in turn produce pulses compatible with a logic circuit employed to decode the phototransistor signals into triggers for driving a 4-channel switched gain equalizer, a dark current clamp, and detector gates. Appropriate selection of the signals enables the instrument to function as a fluorometer or a spectrophotometer.
Abstract:
There is set forth herein a light energy exciter that can include one or more light sources. A light energy exciter can emit excitation light directed toward a detector surface that can support biological or chemical samples.
Abstract:
The present invention provides a multi-channel fluorescence detecting system for detecting a plurality of fluorescence labeled analytes. The multi-channel fluorescence detecting system comprises a light source, a light filter device, a dual branch light guide tube, and a detector. The light source comprises a plurality of sub light sources for respectively providing an excitation light. The plurality of sub light sources are a plurality of single color Light emitting diodes (LEDs) which can be selectively turned on or off. The light source generates a plurality of lights with full width at half maximum (FWHM) wavelengths formed in a non-overlap manner. With the disposition of the plurality of sub light sources, the accuracy for detecting the specific analytes is raised, the light flux with a specific wavelength band is effectively raised (without raising the light flux of the full wavelength band), the structure is simplified, and the manufacturing cost is decreased.