Abstract:
An e-beam or ion beam imaging and exposure system is built into the end of an AFM cantilever which images using the scanning capabilities built into the AFM. In one embodiment, a boron doped diamond cold cathode is formed into the cantilever with an associated accelerating electrode and secondary electron collection electrode. The assembly is brought within a few nanometers of the object to be imaged or exposed using the AFM. One or more gas channels built into the cantilever assembly provide a positive pressure of inert gas to prevent oxidative erosion of the cold cathode and can bleed any surface charge build up on the sample surface. After secondaries are collected the cantilever is moved to the next area to be exposed.
Abstract:
An electron beam processing device includes a chamber housing that defines a chamber interior space and has a first opening. A carriage is movable along the first opening. An electron beam generator is disposed on the carriage so that the generated electron beam passes through the first opening when the carriage moves along the first opening. A disk is disposed between the chamber housing and the carriage and is rotatable about a rotational axis, which is perpendicular to the first opening, at least between a first rotational position and a second rotational position. The disk has a second opening spaced from the rotational axis of the disk in the radial direction. The rotational axis of the disk is disposed so that the first opening always overlaps the second opening at least along an electron beam propagation axis when the disk rotates between the first and second rotational positions.
Abstract:
An ion implantation apparatus with multiple operating modes is disclosed. The ion implantation apparatus has an ion source and an ion extraction means for extracting a ribbon-shaped ion beam therefrom. The ion implantation apparatus includes a magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. Multipole lenses are provided to control beam uniformity and collimation. A two-path beamline in which a second path incorporates a deceleration or acceleration system incorporating energy filtering is disclosed. Finally, methods of ion implantation are disclosed in which the mode of implantation may be switched from one-dimensional scanning of the target to two-dimensional scanning.
Abstract:
Techniques for reducing effects of photoresist outgassing are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for reducing effects of photoresist outgassing in an ion implanter. The apparatus may comprise a drift tube located between an end-station and an upstream beamline component. The apparatus may also comprise a first variable aperture between the drift tube and the end-station. The apparatus may further comprise a second variable aperture between the drift tube and the upstream beamline component. The first variable aperture and the second variable aperture can be adjusted to facilitate differential pumping.
Abstract:
A method for irradiating a planning target volume with charged particles includes delivering the charged particles to the planning target volume with a charged particle therapy system including a charged particle beam path and a gantry configured to rotate about the planning target volume and to direct the charged particle beam path; rotating the gantry, during an irradiation session, to a plurality of positions; during the rotation, irradiating the planning target volume with the charged particles at a first energy level at one or more of the plurality of positions.
Abstract:
A method for irradiating a planning target volume with charged particles includes delivering the charged particles to the planning target volume with a charged particle therapy system including a charged particle beam path and a gantry configured to rotate about the planning target volume and to direct the charged particle beam path; rotating the gantry, during an irradiation session, to a plurality of positions; during the rotation, irradiating the planning target volume with the charged particles at a first energy level at one or more of the plurality of positions.
Abstract:
An ion implanter and an ion implant method are disclosed. Essentially, the wafer is moved along one direction and an aperture mechanism having an aperture is moved along another direction, so that the projected area of an ion beam filtered by the aperture is two-dimensionally scanned over the wafer. Thus, the required hardware and/or operation to move the wafer may be simplified. Further, when a ribbon ion beam is provided, the shape/size of the aperture may be similar to the size/shape of a traditional spot beam, so that a traditional two-dimensional scan may be achieved. Optionally, the ion beam path may be fixed without scanning the ion beam when the ion beam is to be implanted into the wafer, also the area of the aperture may be adjustable during a period of moving the aperture across the ion beam.
Abstract:
An electron beam processing device includes a chamber housing that defines a chamber interior space and has a first opening. A carriage is movable along the first opening. An electron beam generator is disposed on the carriage so that the generated electron beam passes through the first opening when the carriage moves along the first opening. A disk is disposed between the chamber housing and the carriage and is rotatable about a rotational axis, which is perpendicular to the first opening, at least between a first rotational position and a second rotational position. The disk has a second opening spaced from the rotational axis of the disk in the radial direction. The rotational axis of the disk is disposed so that the first opening always overlaps the second opening at least along an electron beam propagation axis when the disk rotates between the first and second rotational positions.
Abstract:
Provided is a portable electron microscope using a microcolumn. The portable electron microscope includes a microcolumn, a low vacuum pump, a high vacuum pump, an ultra-high vacuum ion pump, a first chamber for receiving and fixing the microcolumn and a sample to be measured and forming a vacuum by means of the pumps, a controller, and a case for receiving the pumps, the chamber and the controller.
Abstract:
Systems and methods of an ion implant apparatus include an ion source for producing an ion beam along an incident beam axis. The ion implant apparatus includes a beam deflecting assembly coupled to a rotation mechanism that rotates the beam deflecting assembly about the incident beam axis and deflects the ion beam. At least one wafer holder holds target wafers and the rotation mechanism operates to direct the ion beam at one of the at least one wafer holders which also rotates to maintain a constant implant angle.