Abstract:
A method for selectively depositing analysis-enhancing fluid on a sample surface is disclosed. The method involves providing a sample having a surface that exhibits variations in a surface characteristic that corresponds to desirability for receiving an analysis-enhancing fluid. Once a site on the sample surface is selected according to the surface characteristic at the site, focused radiation, typically acoustic radiation, is applied in a manner effective to eject a droplet of the analysis-enhancing fluid from a reservoir. As a result, the droplet is deposited on the sample surface at the selected site. Optionally, the sample at the selected site is analyzed. Systems for selectively depositing analysis-enhancing fluids are also disclosed.
Abstract:
The invention provides devices, device configurations and methods for improved sensitivity, detection level and efficiency in mass spectrometry particularly as applied to biological molecules, including biological polymers, such as proteins and nucleic acids. In one aspect, the invention relates to charged droplet sources and their use as ion sources and as components in ion sources. In another aspect, the invention relates to charged droplet traps and their use as ion sources and as elements of ion sources. Further, the invention relates to the use of aerodynamic lenses for high efficiency ion transport to a charge particle analyzer, particularly a mass analyzer. Devices of this invention allow mass spectral analysis of a single charged droplet. The ion sources of this invention can be combined with any charge particle detector or mass analyzer, but are a particularly benefit when used in combination with a time of flight mass spectrometer.
Abstract:
The invention relates to the efficient transport of a small fluid sample such as that may be required by analytical devices such as mass spectrometers configured to analyze small samples of biomolecular fluids. Such transport involves nozzleless acoustic ejection, wherein analyte molecules are introduced from a reservoir holding a fluid into an ionization chamber of an analytical device or a small capillary by directing focused acoustic radiation at a focal point near the surface of the fluid sample. This facilitates the analysis of various types of analytes such as biomolecular analytes having a high molecular weight.
Abstract:
Provided herein are systems and methods for sampling analytes into an atmospheric pressure inlet mass spectrometer using ultrasonic nebulization-assisted atmospheric pressure chemical ionization. The systems can include a mass spectrometer having an input and an ultrasonic nebulizer chip. The ultrasonic nebulizer chip can be operatively coupled to the mass spectrometer, such that when the ultrasonic nebulizer chip nebulizes the analyte to provide a nebulized analyte, at least some of the nebulized analyte enters the input of the mass spectrometer.
Abstract:
Focused acoustic radiation, referred to as tonebursts, are applied to a volume of liquid to generate a set of droplets. The droplets generated are substantially smaller in scale than the focal spot size of the acoustic beam (e.g., the frequency at which the acoustic transducer operates). Further, the droplets have trajectories that are substantially in the direction of the acoustic beam propagation direction. In one embodiment, a first toneburst is applied to temporarily raise a protuberance on a free surface of the fluid. After the protuberance has reached a certain state, a second toneburst is applied to the protuberance to break it into very small droplets. In one embodiment, the state of the protuberance at which the second toneburst is supplied is the time period shortly after the protuberance reaches its maximum height but before the protuberance recedes back into the volume of fluid.
Abstract:
A system and method are provided for loading a sample into an analytical instrument using acoustic droplet ejection (“ADE”) in combination with a continuous flow sampling probe. An acoustic droplet ejector is used to eject small droplets of a fluid sample containing an analyte into the sampling tip of a continuous flow sampling probe, where the acoustically ejected droplet combines with a continuous, circulating flow stream of solvent within the flow probe. Fluid circulation within the probe transports the sample through a sample transport capillary to an outlet that directs the analyte away from the probe to an analytical instrument, e.g., a device that detects the presence, concentration quantity, and/or identity of the analyte. When the analytical instrument is a mass spectrometer or other type of device requiring the analyte to be in ionized form, the exiting droplets pass through an ionization region, e.g., an electrospray ion source, prior to entering the mass spectrometer or other analytical instrument. The method employs active flow control and enables real-time kinetic measurements.
Abstract:
An optimal value is calculated for at least one parameter of an ADE device, an OPI, or an ion source device. For each value of a plurality of parameter values for at least one parameter of the ADE device, the OPI, or the ion source device, three steps are performed using a processor. First, the at least one parameter is set to the value. Second, the ADE device, the OPI, the ion source device, and a mass spectrometer are instructed to produce one or more intensity versus time mass peaks for a sample. Third, a feature value is calculated for at least one feature of the one or more intensity versus time mass peaks. A plurality of feature values corresponding to the plurality of parameter values is produced. An optimal value is calculated for the at least one parameter from the plurality of feature values.
Abstract:
A liquid sample introduction system for a plasma spectrometer includes a sample container for holding a liquid sample, a surface acoustic wave (SAW) nebulizer, arranged to receive a liquid sample from the sample container, an electronic controller for supplying electrical power to the SAW nebulizer so as to produce a surface acoustic wave on a surface of the SAW nebulizer, for generating an aerosol from the supplied sample liquid, and an aerosol transport arrangement for receiving the aerosol from the SAW nebulizer and carrying it into a plasma or flame of a spectrometer. The electronic controller is further configured to control the electrical power to the SAW nebulizer so as to permit adjustment of the aerosol parameters, and to control the aerosol transport arrangement so as to permit adjustment of the aerosol delivery into the plasma or flame of the spectrometer.
Abstract:
An ion source includes a nebulizer and a target, with the nebulizer being arranged and adapted to emit, in use, a stream of analyte droplets which are caused to impact upon the target and to ionize analyte to form a plurality of analyte ions. The target comprises a pin or rod which is mounted off-set from a rotating shaft. The target is rotated or translated in use and follows an eccentric path such that the relative position between the nebulizer and target varies as the target is rotated or translated.
Abstract:
To achieve soft ionization more easily when a slight amount of substance is ionized under an atmosphere pressure. An ionization method for a substance contained in a liquid, including: supplying the liquid to a substrate from a probe and forming a liquid bridge made of the liquid containing the substance dissolved therein, between the probe and the substrate; oscillating the probe; and generating an electric field between an electrically conductive portion of the probe in contact with the liquid and an ion extraction electrode.