Abstract:
Processes for fabricating a multi-layer circuit assembly and a multi-layer circuit assembly fabricated by such processes are provided. The process includes (a) providing a substrate at least one area of which comprises a plurality of vias, these area(s) having a via density of 500 to 10,000 holes/square inch (75 to 1550 holes/square centimeter); (b) applying a dielectric coating onto all exposed surfaces of the substrate to form a conformal coating thereon; and (c) applying a layer of metal to all surfaces of the substrate. Additional processing steps such as circuitization may be included.
Abstract:
A coating is formed by depositing the coating on a metallic feature at a deposition temperature. Subsequently, the deposited coating and the metallic feature are cooled below the deposition temperature. The coating is chosen such that this cooling step causes the coating to induce a tensile stress in the metallic feature sufficient to substantially suppress the growth of metallic whiskers on that metallic feature. The coating thereby acts to suppress the growth of metallic whiskers.
Abstract:
A multilayer printed wiring board 10 includes: a mounting portion 60 on the top surface of which is mounted a semiconductor element that is electrically connected to a wiring pattern 32, etc.; and a capacitor portion 40 having a high dielectric constant layer 43, formed of ceramic and first and second layer electrodes 41 and 42 that sandwich the high dielectric constant layer 43. One of either of the first and second layer electrodes 41 and 42 is connected to a power supply line of the semiconductor element and the other of either of the first and second layer electrodes 41 and 42 is connected to a ground line. In this multilayer printed wiring board 10, high dielectric constant layer 43 included in the layered capacitor portion 40, which is connected between the power supply line and the ground line, is formed of ceramic. With this structure, the static capacitance of the layered capacitor portion 40 can be high, and an adequate decoupling effect is exhibited even under circumstances in which instantaneous potential drops occur readily.
Abstract:
Disclosed herein are a coating solution for the formation of a dielectric thin film and a method for the formation of a dielectric thin film using the coating solution. The coating solution comprises a titanium alkoxide, a β-diketone or its derivative, and a benzoic acid derivative having an electron donating group. The method comprises spin coating the coating solution on a substrate to form a thin film and drying the thin film at a low temperature to crystallize the thin film. The titanium-containing coating solution is highly stable. In addition, the coating solution enables formation of a thin film, regardless of the kind of substrates, and can be used to form dielectric thin films in an in-line mode in the production processes of PCBs.
Abstract:
A printed circuit board including a conductor portion, an insulating layer formed over the conductor portion, a thin-film capacitor formed over the insulating layer and including a first electrode, a second electrode and a high-dielectric layer interposed between the first electrode and the second electrode, and a via-hole conductor structure formed through the second electrode and insulating layer and electrically connecting the second electrode and the conductor portion. The via-hole conductor structure has a first portion in the second electrode and a second portion in the insulating layer. The first portion of the via-hole conductor structure has a truncated-cone shape tapering toward the conductor portion.
Abstract:
An electromagnetic bandgap structure EBG includes a rigid substrate, a first conductive plane provided on the rigid substrate, a dielectric layer provided on the first conductive plane, and a plurality of conductor patches arrayed in a two-dimensional regular pattern on the dielectric layer. The electromagnetic bandgap structure also includes an interlayer insulation film provided on top of the conductor patches, and a second conductive plane provided on the interlayer insulation film. The conductor patches and the second conductive plane are interconnected by a plurality of conductors provided in extending through the bulk of the interlayer insulation film.
Abstract:
A circuit system includes: forming a first electrode over a substrate; applying a dielectric layer over the first electrode and the substrate; forming a second electrode over the dielectric layer; and forming a dielectric structure from the dielectric layer with the dielectric structure within a first horizontal boundary of the first electrode.
Abstract:
An embedded passive structure, its method of formation, and its integration onto a substrate during fabrication are disclosed. In one embodiment, the embedded passive structure is a thin film capacitor (TFC) formed using a thin film laminate that has been mounted onto a substrate. The TFC's capacitor dielectric and/or lower electrode layers are patterned in such a way as to reduce damage and improve cycle time. In one embodiment, the capacitor dielectric has a high dielectric constant and the substrate is an organic packaging substrate.
Abstract:
A circuit board structure and a manufacturing method thereof are provided. The circuit board structure includes a composite substrate, a dielectric layer, and a circuit layer. The composite substrate includes a metal substrate doped with non-metal powders and a metal buffer layer. A surface of the metal buffer layer opposite to the other surface of the metal buffer layer in contact with the metal substrate is treated by a polishing process. The dielectric layer is formed on the polished surface of the metal buffer layer, and the circuit layer is formed on the dielectric layer. Alternatively, a barrier layer is interposed between the dielectric layer and the metal buffer layer for preventing a diffusion effect of the metal buffer layer.
Abstract:
A method for manufacturing a substrate board with high efficiency of heat conduction and electrical isolation is disclosed. The method comprises the steps of: providing a substrate layer with an arrangement surface and a heat-dissipating surface; executing an anodic treatment on the arrangement surface and the heat-dissipating surface to respectively form a first anodic treatment layer and a second anodic treatment layer; forming a heat conduction and electrical isolation layer on the second anodic treatment layer; and forming a diamond like carbon (DLC) layer on the heat conduction and electrical isolation layer. The heat expansion coefficient of the substrate layer is greater than that of the second anodic treatment layer, the heat conduction and electrical isolation layer, and the DLC layer in turn.