Abstract:
A dynamic radon access memory (DRAM) module includes a printed circuit board, a number of DRAM units, a number of flash memory units, a number connecting pins and an interface controller. The DRAM units and the flash memory units are distributed on the printed circuit board. The connecting pins are formed at an edge of the printed circuit board. The interface controller is electrically connected to the flash memory units and a portion of the connecting pins, wherein each of the interface controller provides at least one serial interface between the flash memory units and the portion of connecting pins thereby enabling data transmission through the portion of connecting pins in at least one serial mode. The flash memory units integrally constitute a flash disk drive in the DRAM module. Therefore, frequently installation and uninstallation of the flash memory drive can be avoided. A motherboard assembly including the aforementioned DRAM module can be developed.
Abstract:
A power distribution system is disclosed. The system includes a first power line and a second power line laid out on a substrate. The first power line is spaced apart from the second power line. The system also includes at least one conductive connecting line that electrically couples the first power line at one end and the second power line at another end. A power supply supplies power to the first power line and the second power line. A supply node on the conductive connecting line is then used to provide the supplied power.
Abstract:
A communication apparatus including: a frame; a transmission line connectable to a public line network; a print circuit board including a frame ground terminal portion and configured such that a dielectric strength between the transmission line and the frame ground terminal portion takes a specific value in a state in which elements are connected to between the transmission line and the frame ground terminal portion via conductor patterns. The frame ground terminal portion includes: a first land formed on a first conductor pattern formed on a face of the print circuit board, a surge protection element being connected to the first conductor pattern; and a second land formed on a second conductor pattern formed on the face, elements different from the surge protection element being connected to the second conductor pattern. The first and second lands contacts the frame by fixing of the print circuit board to the frame.
Abstract:
A component-embedded board device has a wiring board in which an electronic component is embedded, a connection member which is conductive and arranged at a surface of the wiring board, and an inner wiring unit which is arranged in the wiring board and connects an electrode of the electronic component with the connection member. The component-embedded board device is further provided with an inspection connection member for an inspection of a faulty wiring of the inner wiring unit, and an inspection wiring unit which is arranged in the wiring board and connects the inspection connection member with one of the electrode and a predetermined portion of the inner wiring unit. The inspection connection member is conductive and arranged at a surface of the wiring board.
Abstract:
An interconnect structure employs a closed-grid bus to link an integrated circuit tester channel to an array of input/output (I/O) pads on a semiconductor wafer so that the tester channel can concurrently communicate with all of the I/O pads. The interconnect structure includes a circuit board implementing an array of bus nodes, each corresponding to a separate one of the I/O pads. The circuit board includes at least two layers. Traces mounted on a first layer form a set of first daisy-chain buses, each linking all bus nodes of a separate row of the bus node array. Traces mounted on a second circuit board layer form a set of second daisy-chain buses, each linking all bus nodes of a separate column of the bus node array. Vias and other circuit board interconnect ends of the first and second daisy-chain buses so that they form the closed-grid bus. Each bus node is connected though a separate isolation resistor to a separate contact pad mounted on a surface of the circuit board. A set of spring contacts or probes link each contact pad to a separate one of the I/O pads on the wafer.
Abstract:
An electronic module capable of easily determining connection reliability of an ACF connection portion is provided. Electrode wirings of a board serving as an electronic parts of a display panel are connected with ACF bonding wirings of an FPC through an ACF to make electrical connection between the FPC and the board. Two branch portions branched from each of the ACF bonding wirings extend to an edge of the FPC. Low resistance measurement of the connection portion can be performed using the electrode wiring of the board and the branch portions, so whether or not the ACF connection portion is faulty can be determined.
Abstract:
A wiring board includes: a flexible insulating base; a plurality of conductive wirings arranged on the insulating base, end portions of the conductive wirings defining inner leads at a region where a semiconductor chip is to be mounted; and bump electrodes that are provided respectively at the inner leads of the conductive wirings. The wiring board further includes: dummy inner leads having a shape and a pitch corresponding to a shape and a pitch of the inner leads and aligned with the inner leads, the dummy inner leads being provided with dummy bump electrodes corresponding to the bump electrodes; a trunk conductive wiring provided for a group of one or an adjacent plurality of the dummy inner leads; and a branch wiring branching off from the trunk conductive wiring, the branch wiring being connected with the dummy inner leads belonging to the group corresponding to the trunk conductive wiring. Stress concentration on the inner leads during packaging of the semiconductor chip, resulting from the sparse arrangement of the electrode pads of the semiconductor chip, can be alleviated, thus suppressing a break in the inner leads.
Abstract:
An end of a first line and an end of a second line of a first write wiring pattern are arranged on both sides of a third line of a second write wiring pattern. Circular connection portions are provided at the ends of the first line and the second line. In addition, through holes are formed in respective portions of a base insulating layer below the connection portions. Each connection portion comes in contact with a connecting region of a suspension body within the through hole.
Abstract:
An energy conditioner structure comprising a first electrode (120), a second electrode (80), and a shield structure (70, 110, 150) provides improved energy conditioning in electrical circuits. The structures may exist as discrete components or part of an integrated circuit. The shield structure in the energy conditioner structure does not electrically connect to any circuit element.
Abstract:
A substrate panel primarily comprises a plurality of substrate strips arranged in an array, one or more current input lines, a plurality of cascaded lines connecting between the substrate strips, and a current input buffer gate. Current input lines connect a current input side of the substrate panel to the adjacent substrate strips. The current input buffer gate has a frame around the substrate strips and a plurality of meshes where the frame intersects with the current input lines and the meshes intersect with the cascaded lines with both ends of the meshes connecting to the frame. Therefore, the current can be evenly distributed to each substrate strip during plating processes to improve the issues of different plating thicknesses and different plating roughness caused by different current densities and to protect the internal circuits inside the substrate strips from the damages due to current surges and unstable voltages.