Abstract:
A wiring board has a plurality of wiring layers, a first land, a second land, a first via and a second via. The first land and the second land are formed on at least one wiring layer of the wiring board and are disposed to partially overlap with each other. The first via and the second via are formed in association with the first land and the second land, respectively. The first via and the second via electrically connect a first wiring layer and a second wiring layer of the plurality of wiring layers to each other. The wiring board has a separator that is formed by a hole that separates the first land and the second land from each other.
Abstract:
A method is for making a printed wiring board (PWB) assembly. The method may include forming a first PWB having a plurality of first electrically conductive pads, forming a second PWB including a plurality of electrically conductive traces having exposed ends on an edge surface of the second PWB, and covering the edge surface of the second PWB with an electrically conductive layer. The method may also include selectively removing portions of the electrically conductive layer to define a plurality of second electrically conductive pads electrically connected to corresponding ones of the exposed ends of the electrically conductive traces, and assembling the first and second PWBs together so that the first and second electrically conductive pads are electrically coupled together to define the PWB assembly.
Abstract:
A package substrate free of malfunction or error even with an IC chip in a high frequency range, particularly an IC chip with a frequency exceeding 3 GHz, is provided. A conductor layer 34P on a core substrate 30 is formed to have a thickness of 30 μm and a conductor circuit 58 on an interlayer resin insulating layer 50 is formed to have a thickness of 15 μm. By making the conductor layer 34P thick, it is possible to increase a volume of the conductor itself and decrease resistance. Further, by employing the conductor layer 34 as a power supply layer, it is possible to improve a capability of supplying power to the IC chip.
Abstract:
A method of forming a device associated with a via includes forming an opening or via, and forming at least a pair of conducting paths within the via. Also disclosed is a via having at pair of conducting paths therein.
Abstract:
A package substrate free of malfunction or error even with an IC chip in a high frequency range, particularly an IC chip with a frequency exceeding 3 GHz, is provided. A conductor layer 34P on a core substrate 30 is formed to have a thickness of 30 μm and a conductor circuit 58 on an interlayer resin insulating layer 50 is formed to have a thickness of 15 μm. By making the conductor layer 34P thick, it is possible to increase a volume of the conductor itself and decrease resistance. Further, by employing the conductor layer 34 as a power supply layer, it is possible to improve a capability of supplying power to the IC chip.
Abstract:
A connection device for high frequency signals is disclosed. The connection device includes a printed circuit having an external face and a transmission line printed on the external face, and a coaxial connector surface mounted on the external face of the printed circuit. The transmission line is connected to the connector by means of a bump contact belonging to the transmission line. A central core of the connector is connected to the bump contact. The printed circuit has at least one internal ground plane disposed parallel to the external face and contributing to the matching of the transmission line. The internal ground plane defines a perforation therethrough that faces the bump contact.
Abstract:
A method of forming a device associated with a via includes forming an opening or via, and forming at least a pair of conducting paths within the via. Also disclosed is a via having at pair of conducting paths therein.
Abstract:
A compact Ku band microwave diplexer configured as a three port surface mount component on a miniature alumina substrate. Input signals occurring at a common port having frequencies within a first pass band are passed to a second port while being isolated from signals occurring at a third port. Signals occurring at the third port are passed to the common port while being isolated from the signals at the second port. A microstrip dual spur line filter is used combined with open circuit stubs to provide enhanced second harmonic suppression on the transmit side, while using a coupled line microstrip filter on the receive side. This approach allows for compact size and automated component assembly through pick and place and reflow manufacturing techniques.
Abstract:
A multilayer insulating substrate with excellent electrical characteristics and a method for manufacturing the multilayer insulating substrate. A multilayer insulating substrate is composed of a first insulating layer including first central conductor regions to constitute through electrodes and first outer conductor regions surrounding the first central conductor regions, and a second insulating layer including second central conductor regions to constitute through electrodes and second outer conductor regions surrounding the second central conductor regions, wherein the second insulating layer is laminated on the first insulating layer to allow electrical connection between the first central conductor regions and the second central conductor regions and electrical connection between the first outer conductor regions and the second outer conductor regions so that a coaxial wiring structure is configured by the first outer conductor regions and the second outer conductor regions relative to the first central conductor regions and the second central conductor regions.
Abstract:
In one embodiment of the present invention, a high frequency circuit board includes a laminate having a top surface with a groove; a semi-rigid cable positioned in the groove of the laminate; and a passivation layer filling the groove; wherein the semi-rigid cable is configured to transmit a high frequency signal, and the semi-rigid cable comprises a central conductor, an outer conductor, and an insulating layer between the central conductor and the outer conductor.