Abstract:
A device housing package includes a substrate in a form of a rectangle, having a mounting region of a device at an upper surface thereof; a frame body disposed on the substrate so as to extend along an outer periphery of the mounting region, the frame body having a cutout formed at a part thereof; and an input-output terminal disposed in the cutout. The input-output terminal includes a first insulating layer, a second insulating layer overlaid on the first insulating layer, and a third insulating layer overlaid on the second insulating layer. First terminals set at a predetermined potential are disposed on an upper surface of the first insulating layer. Second terminals set at a predetermined potential are disposed on a lower surface of the first insulating layer. Third terminals through which AC signals flow are disposed on an upper surface of the second insulating layer.
Abstract:
A method for producing a package includes preparing a base substrate provided with a low-melting glass and a lid, defoaming the low-melting glass by heating the low-melting glass to a temperature equal to or higher than the pour point in a reduced pressure atmosphere, and joining the base substrate and the lid to each other by superimposing the base substrate and the lid on each other through the low-melting glass, and then heating the low-melting glass to a temperature equal to or higher than the pour point in a reduced pressure atmosphere.
Abstract:
The electrical device (2, 202) according to the invention comprises a first electrical component (4) and a second electrical component (6) connected to each other via an electrical connection means (26) having an electrically insulating support plate (24), and a weld joint (22) deposited on the support plate (24).The weld joint (22) has a melting temperature (TO significantly lower than an ambient operating temperature (Ta) to which at least one of the two electrical components and the electrical connection means (26) are provided to be subjected.The electrical device (2) comprises a cement (28) that completely covers the exposed weld joint (22), the material of the cement (28) being chosen to maintain its adhesion and its tightness with respect to the weld joint (22) when the ambient operating temperature (Ta) is applied.
Abstract:
A device housing package includes a substrate in a form of a rectangle, having a mounting region of a device at an upper surface thereof; a frame body disposed on the substrate so as to extend along an outer periphery of the mounting region, the frame body having a cutout formed at a part thereof; and an input-output terminal disposed in the cutout. The input-output terminal includes a first insulating layer, a second insulating layer overlaid on the first insulating layer, and a third insulating layer overlaid on the second insulating layer. First terminals set at a predetermined potential are disposed on an upper surface of the first insulating layer. Second terminals set at a predetermined potential are disposed on a lower surface of the first insulating layer. Third terminals through which AC signals flow are disposed on an upper surface of the second insulating layer.
Abstract:
Provided is a ceramic package having a cavity in which an electronic component such as a crystal oscillator is mounted, and which realizes even joining of a metallic frame around the opening thereof, as well as reliable sealing of the opening. A ceramic package 1 includes a package main body 2 which is formed of a ceramic material, which has a front surface 3 and a back surface 4 having a rectangular shape in plan view, and which has a cavity 6 opening toward the front surface 3; a first metalized layer 11 which has a frame shape in plan view and is formed on the front surface 3; and a second metalized layer 12 which is formed on the front surface 10 of the first metalized layer 11 so as to assume a frame shape, and which has a width w2 smaller than the width w1 of the first metalized layer 11, the width w2 being measured in an inward/outward direction of the package main body 2, wherein the width w2, in the inward/outward direction, of the second metalized layer 12a at each corner portion C of the front surface 3 in plan view is smaller than the width w1, in the inward/outward direction, of the second metalized layer 12 in a region other than the corner portion C in plan view.
Abstract:
A composite electronic component includes a metal component with a wide surface terminal, a printed circuit board with a wide surface mounting pad; and a plurality of small area solder films partitioned into small sectioned regions. The small sectioned regions are sectioned by grid-shaped solder resist banks on the wide surface mounting pad. A cream solder is applied on the individual small sectioned regions to form the plurality of small area solder films. The grid-shaped solder resist bank has a width configured to: reduce a bubble that occurs in the sectioned region at one side of the grid-shaped solder resist bank from merging with a bubble that occurs in the sectioned region at another side of the grid-shaped solder resist bank; and act as an escaping route for a bubble that occur in the small area solder film.
Abstract:
A method for producing a package includes preparing a base substrate provided with a low-melting glass and a lid, defoaming the low-melting glass by heating the low-melting glass to a temperature equal to or higher than the pour point in a reduced pressure atmosphere, and joining the base substrate and the lid to each other by superimposing the base substrate and the lid on each other through the low-melting glass, and then heating the low-melting glass to a temperature equal to or higher than the pour point in a reduced pressure atmosphere.
Abstract:
A base substrate includes a substrate and metal layers (a metalized layer and an electrode layer) provided on the substrate. Each metal layer includes at least a nickel-containing film which contains nickel as a material and a palladium-containing film which is located on an opposite side to the substrate with respect to the nickel-containing film and contains palladium as a material, and at least one of the nickel-containing film and the palladium-containing film contains phosphorus at a content of less than 1% by mass.
Abstract:
An oscillator assembly including a base substrate with a cavity defining an insulative air pocket. A component substrate is seated on the base substrate. An oscillator and a combination heater/temperature control assembly are located on one side and a temperature control assembly is located on the opposite side and extends into the cavity. An interior lid covers and defines an oven for the oscillator and the heater/temperature control assembly. An exterior lid covers the interior lid. A thermal resistance/heat transfer element is seated on the oscillator for increasing thermal resistance and is seated on both the oscillator and the heater/temperature control assembly for decreasing thermal resistance.
Abstract:
An electronic component package has a base in the shape of a rectangle as viewed from the top, and a metal lid. A terminal electrode on a base bottom surface and a circuit substrate are joined using a conductive adhesive material. In the electronic component package, a first terminal electrode group including two or more terminal electrodes formed in parallel is formed eccentrically to one corner position of the base bottom surface, and a single second terminal electrode, or a second terminal electrode group including two or more terminal electrodes formed in parallel, is formed eccentrically only to a first diagonal position diagonally opposite the one corner position. Also, no-electrode regions in which no terminal electrode is formed along a short side of the base are provided at another corner position facing the one corner position in a short side direction of the base, and a second diagonal position diagonally opposite the other corner position. At least one of the terminal electrodes is a ground terminal electrode connected to the metal lid.