Abstract:
A size-arrayed emitter structure is disclosed for use in a field emission display device. The emitter structure is designed such that each emitter array (illustratively, an array comprising microtips 40 in a 5.times.5 matrix) has an emitter hole 52 size (critical dimension) distribution that is centered on the optimum hole critical dimension and extends past the point at which the emitter tip 40 will operate. If the manufacturing process varies and produces an actual critical dimension larger than the designed value, emitters with the designed critical dimensions smaller than optimal will shift toward optimal, and emitters with critical dimensions smaller than the minimum operating value will become operational, while emitters with designed critical dimensions larger than optimal will cease to function. Similarly, if the actual critical dimension is smaller than the designed value, emitters with the designed critical dimensions larger than optimal will shift toward optimal, and emitters with critical dimensions larger than the maximum operating value will become operational, while emitters with designed critical dimensions smaller than optimal will cease to function. This will result in a distribution of active emitters in each array that are centered on the optimal value and that extend from the minimum functional emitter critical dimension to the maximum functional emitter critical dimension. Where the number of emitter arrays per display pixel is relatively large, the critical dimension of all of the emitter holes within each array may be designed to be equal, and the totality of arrays within each pixel may be designed such that their emitter hole critical dimensions are centered on the optimum hole critical dimension and extend past the point at which the emitter tips will operate.
Abstract:
A multiple electrode field electron emission device is formed on an insulating layer disposed on a surface of an insulated flat substrate and has a cathode with multiple of emission projections each having a projection tip that overhangs the insulating layer. The device further includes an anode for collecting electrons ejected from the cathode emission projections formed on the surface of the substrate. Control electrodes, having one of several alternate configurations, are formed between the cathode and the anode. The device is fabricated using over-etching and directional particulate deposition techniques.
Abstract:
A remote segment monitor unit is disclosed that is coupled to a segment cable of a local area network system. The remote segment monitor unit, for each transaction on the cable segment, determines a value related to the transaction signal strength and determines the identity of the network node from which the transaction originated. By providing a record of the transaction signal strength associated with each network node as a function of time, components that are functioning outside of acceptable boundaries, components showing erratic behavior and components with deteriorating performance can be identified.
Abstract:
In a mounting device for electrically heated, spirally wound wire cathodes in electron guns, two mounting posts joined together by an insulator are configured as sector-shaped sections of a hollow cylinder, and have each a circumferential groove on its end remote from the insulator. The surfaces defining the grooves are parts of common circular and cylindrical surfaces, and the mounting ends of the cathodes are of a configuration approximately complementary to that of the grooves in the mounting posts. The mounting ends therefore lie in a spring-biased and form-fitting manner in the circumferential grooves.
Abstract:
Directly heated oxide cathode especially for velocity-modulated tubes in pulse operation, characterized by the features that an outer conductor is designed cylindrically and an inner conductor is coaxially arranged by means of a ceramic support disc, and that on one end face, a metal layer connected to the outer conductor and the inner conductor is provided with an electron-emitting oxide layer.
Abstract:
A thermionic emission cathode of a single crystal made of the calcium hexaboride type crystaline structure comprises a top surrounded by natural face inherent to the axial direction of the single crystal.
Abstract:
An ion beam source characterized in that a needle-like tip is comprised of a carbide, a nitride, or a diboride of at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb and Ta, a hexaboride of at least one element of rare earth metal elements of atomic numbers 57-70, or carbon. Stable ion beam emission of high brightness and long life can be obtained by using the needle-like tip of the said material.
Abstract:
A high voltage electrode for a spark discharge device used in cooperation with an opposing roller electrode to roughen plastic sheets. The electrode is formed of a multiplicity of plates, or platelets, aligned edge to edge to form together a knife edge. Individual platelets are removable from an active position, within a holder, to an active position, on a selectable basis. Thereby, the portion of the plastic sheet to be roughened can readily be controlled.
Abstract:
An electron gun for a shaped beam type electron beam delineating system is provided with a cathode which is prepared from a single crystal of lanthanum hexaboride (LaB.sub.6) the convex end portion of which has a tip radius ranging between 260 and 1,000 microns. The electron gun of the invention has a long effective life for producing a stable electron beam which can irradiate a limiting aperture with a uniform current density and insures the sufficiently high brightness of the electron beam image projected on a target.
Abstract:
A cathode for an electron gun in which a lanthanum hexaboride cap has an internal recess which accommodates a pyrolytic graphite heater element. The cap is cup-shaped, while the heater element is in the form of a frustum of a cone and is resiliently maintained in abutting relationship with the cap by a corrugated tubular member and an assembly of rigid tubes. A cylindrical shell surrounds the periphery of the cap, and a pair of generally conical shielding elements are located in position to intercept stray thermal radiation from the heater element. All of these cathode components are supported in coaxial relationship with each other within the electron gun.