Abstract:
Embodiments described herein may include apparatuses, systems and/or processes to provide a cooling apparatus that includes a first heatsink, a second movable heatsink and a flexible thermal conductor physically and thermally coupled with the first and second heatsinks, where the flexible thermal conductor is to flex and remain thermally coupled with the first heatsink and the second heatsink, when the second heatsink is moved relative to the first heatsink. The first heatsink may be coupled to a heat source such as a processor that may be coupled with a PCB. Also, the movable heatsink may allow access to components, such as dual in-line memory modules (DIMMs) that are next to the first heatsink and under the movable second heatsink. Other embodiments may be described and/or claimed.
Abstract:
A testing system and process comprises a converged test platform for structural testing and system testing of an integrated circuit device. The testing system comprises a converged test platform supported by a baseboard of an automated test assembly. The converged test platform comprises a DUT socket for testing an integrated circuit device, at least one testing electronic component selectively electrically coupled to the DUT socket by at least one switch operable to electrically switch at least some testing signals between the automated testing assembly and the DUT socket to the at least one testing electronic component for both structural testing and system testing of the integrated circuit device within the same test flow. The switch(es) and testing electronic component(s) (e.g., an FPGA) can be reprogrammable for testing flexibility and faster through put. Associated processes and methods are provided for both class and system testing using the converged test platform for back-end and front-end testing.
Abstract:
Etching for probe wire tip is described particularly well suited to microelectronic device test. In one example, wires of a probe head are covered with an encapsulation material, the wires being attached to a test probe head substrate, each of the wires having two ends, the first end being attached to the substrate and the second end being opposite the substrate, each wire having an outer coating around a core. The wires are etched to remove the outer coating at the second end of the wires. The encapsulation material is then removed.
Abstract:
Methods and structures for testing a microelectronic packaging structure/device are described. Those methods may include placing a device in a floating carrier, wherein the floating carrier is coupled to a socket housing by pin dowels disposed in four corners of the socket housing, and wherein at least two actuating motors are disposed within the socket housing, and micro adjusting the device by utilizing a capacitive coupled or a fiber optic alignment system wherein a maximum measured capacitance or maximum measured intensity between alignment structures disposed in the socket housing and alignment package balls disposed within the device indicate optimal alignment of the device. Methods further include methods for active co-planarity detection through the use of a capacitive-coupled techniques.
Abstract:
An apparatus is described. The apparatus includes a packaged semiconductor device. The packaged semiconductor device having an integrated heat spreader, wherein, a boiling enhancement structure exists on the integrated heat spreader without a block mass residing between the boiling enhancement structure and the integrated heat spreader. The boiling enhancement structure has a structured non-planar surface to promote bubble nucleation in an immersion cooling system.
Abstract:
An apparatus is described. The apparatus includes a back plate, where, an electronic circuit board is to be placed between the back plate and a thermal cooling mass for a semiconductor chip package. The back plate includes a first material and a second material. The first material has greater stiffness than the second material. The back plate further includes at least one of: a third material having greater stiffness than the second material; re-enforcement wires composed of the first material; a plug composed of the second material that is inserted into a first cavity in the first material, a stud inserted into a second cavity in the plug. An improved bolster plate having inner support arms has also been described.
Abstract:
Composite backplate architectures for backside power delivery and associated methods are disclosed. An example backplate includes a first layer including a first material, and a second layer attached to the first layer. The second layer includes a second material different from the first material. The example backplate further includes a bus bar attached to the first layer.
Abstract:
Methods, systems, and apparatus described herein relate to a conformable cold plate for fluid cooling applications. An example method includes re-shaping a tube to contour non-uniform surfaces; and assembling a fluid cooling assembly using the re-shaped tube, the re-shaped tube capable to transfer fluid for cooling of one or more devices.
Abstract:
An apparatus is described. The apparatus includes a housing including a base and sidewalls. The housing is to support a circuit board. The apparatus also includes a heat sink to be supported by the housing independent of the circuit board. The heat sink is to be thermally coupled to a semiconductor package attached to the circuit board. The heat sink is to be closer to the base of the housing than the circuit board is to be to the base of the housing.
Abstract:
Systems, apparatus, articles of manufacture, and methods are disclosed for supports for internal hardware of electronic devices. An example support includes an integrated circuit (IC) carrier that includes a plurality of walls, supports carried by the walls to support an IC from below the IC, and a retention clip to secure the IC.