Abstract:
A method and apparatus for measuring the absorptivity of a radiation detector by making the detector an integral part of a cavity radiometer. By substituting the detector for the surface of the cavity upon which the radiation first impinges a comparison is made between the quantity of radiation incident upon the detector and the quantity reflected from the detector. The difference between the two is a measurement of the amount of radiation absorbed by the detector.
Abstract:
A temperature sensor includes a first infrared measuring means, a second infrared measuring means, and a calculating unit. The first infrared measuring means measures infrared rays emitted from an object and outputs a first voltage. The second infrared measuring means measures infrared rays emitted from around the object and outputs a second voltage. The calculating unit calculates the output temperature of the object from the first voltage, calculates the ambient temperature of the object from the second voltage, and corrects the output temperature based on the ambient temperature to calculate the temperature of the object.
Abstract:
An infrared sensor assembly for sensing infrared radiation from an object is disclosed. The infrared sensor assembly comprises a sensor array comprising a plurality of sensing elements, provided on or embedded in a substrate extending in a substrate plane. The sensor array comprises at least two infrared sensing elements, each infrared sensing element having a radiation responsive element providing a proportionate electrical signal in response to infrared radiation incident thereto and at least two blind sensing elements, at least one blind sensing element being interspersed among the at least two sensing elements, each blind sensing element being shielded from incident infrared radiation from the object and providing a proportionate electrical signal in response to parasitic thermal fluxes. The output of the sensor array is a function of the infrared sensing elements and of the blind sensing elements such that parasitic thermal fluxes are at least partly compensated for.
Abstract:
Provided is an infrared image sensor for detecting infrared rays. The infrared image sensor includes a light-receiving unit including a pixel region in which a plurality of pixels are arranged and at least one reference pixel; a difference circuit for acquiring a first differential signal that is a differential signal between a signal of one pixel contained in the pixel region and a signal of the reference pixel and a second differential signal that is a differential signal between signals of two predetermined pixels out of the pixels contained in the pixel region; and a pixel signal calculating unit that calculates a signal of each of the pixels on the basis of the first differential signal and the second differential signal.
Abstract:
The invention provides a sensor including a first sensor element formed in a first substrate and at least one optical element formed in a second substrate, the first and second substrates being configured relative to one another such that the second substrate forms a cap over the first sensor element. The cap includes a diffractive optical element and an aperture stop which collectively determine the wavelength of incident radiation that is allowed through the cap and onto the at least one optical element.
Abstract:
A temperature control apparatus comprises a light-emitting device, a light-emitting device controller, a Peltier device for controlling the temperature of the light-emitting device to a target temperature, a temperature detector for the light-emitting device, a first reference voltage holding unit for holding a voltage corresponding to the target temperature, a reference voltage controller for outputting a holding signal and a switching signal, a second reference voltage holding unit for holding the output voltage of the temperature detector on the basis of the holding signal, a reference voltage switching unit for selecting either the output of the first reference voltage holding unit or the output of the second reference voltage holding unit as a reference voltage, and a Peltier controller for controlling the Peltier device so as to minimize a difference between the output voltage of the temperature detector and the output voltage of the reference voltage switching unit.
Abstract:
An anesthetic agent analyzer having six or more independent analytical channels, where each channel comprises a first thermopile which receives incident infrared radiation and a second thermopile behind the first thermopile which is blocked from the incident infrared radiation and thus serves as a reference for detecting ambient temperature variations. The first and second thermopiles are connected in a "parallel opposed" fashion so that the effects of ambient temperature variations automatically cancel and the detectors may be readily configured in a detector package. The anesthetic agent analyzer of the invention is designed for use with a wideband infrared radiation source so that anesthetic agents having characteristic absorption bands in the far infrared wavelength range (6-15 microns) may be more readily detected and discriminated. When implemented in a mainstream configuration, a disposable airway adapter with windows formed of polypropylene or some other suitable window material which minimally attenuates the infrared energy at the wavelengths of interest is also used. The concentrations of the discriminated anesthetic agent gases are then calculated using a second order polynomial equation having cross product terms. By connecting the first and second thermopiles in a back to back configuration, the detector device of the invention permits twice as many independent analytical channels to be provided in the same substrate area, with the resultant reduction in ambient temperature gradients.
Abstract:
In one embodiment, a system for measuring the temperature of a first object, such as wafer 112, in the presence of a second radiating object, such as a heating lamp 118, is disclosed herein. A heating lamp 118 is provided for heating the wafer 112 for device processing. Both the wafer 112 and the lamp 118 emit radiation. A first detector 120 detects radiation emitted by both the wafer 112 and the lamp 118. A second detector 122 which detects radiation from only the heating lamp 118 may also be used. A modulation source 126 is provided for modulating the heater 118 to a selected modulation depth M.sub.L such that the temperature of the lamp 118 varies with the selected AC modulation and the temperature of the wafer 112 remains substantially constant. Also, circuitry is provided for determining the fraction of radiation emitted by the lamp and collected by the first detector 120 (lamp interference signal) based upon the heating lamp modulation and then calculating the precise temperature of the wafer 112. Other systems and methods are also disclosed.
Abstract:
Thermal conditions inside an oven are measured by a transducer device (1) having plates providing heat absorbent and heat reflective surfaces (2,4) and a thermocouple for measuring the temperature difference between them as a measure of radiant heat. The plates are mounted on a thin thermally insulating layer secured to a heat sink in the form of a copper mass (7,9), and a second thermocouple measures the temperature difference between the heat absorbent surface and the heat sink as a measure of heat flux through the surface. A Peltier cooler (55) or a flowing liquid can be used alternatively as a heat sink. Heat flux alone can be measured by omission of the heat reflective surface, and where the heat sink is a flowing fluid the heat gained can be measured.
Abstract:
A temperature measuring apparatus is provided for determining the temperature of a target material to be measured as compared with the temperature of a spaced reference source which has a temperature control for controlling the temperature of the reference source. A differential radiation detector having a first detector exposed to the target material and a second detector which is shielded from the target material and exposed to the reference source provides a differential output or error signal which is used to control the temperature of the reference source. When the reference source temperature is the same as the target, the temperature of the reference source is read out which is the temperature of the target material regardless of the emissivity. The differential radiation detector is positioned in spaced relation to the target material and is focused onto the target and the reference material and the error signal generated is used for controlling the temperature of the reference source. The reference source is preferably a heated plate having a step in the center thereof with a hole therein through which the differential detector means views the target as well as the plate. Using a hole prevents reflection from the target back through the plate to areas of uncontrolled temperature.