Abstract:
An imaging spectrometer includes an all-reflective objective module that receives an image input and produces an objective module output at an exit slit, and an all-reflective collimating-and-imaging module that receives the objective module output as an objective-end input and produces a collimating-end output, wherein the collimating-and-imaging module comprises a reflective triplet. A dispersive element receives the collimating-end output and produces a dispersive-end input into the collimating-and-imaging module that is reflected through the collimating-and-imaging module to produce a spectral-image-end output. An imaging detector receives the spectral-image-end output of the collimating-and-imaging module. The objective module may be a three-mirror anastigmat having an integral corrector mirror therein, or an all-reflective, relayed optical system comprising a set of five powered mirrors whose powers sum to substantially zero. The collimating-and-imaging module may be optimized to minimize spectral smile.
Abstract:
The invention is an optical method and apparatus for measuring the temperature of semiconductor substrates in real-time, during thin film growth and wafer processing. Utilizing the nearly linear dependence of the interband optical absorption edge on temperature, the present method and apparatus result in highly accurate measurement of the absorption edge in diffuse reflectance and transmission geometry, in real time, with sufficient accuracy and sensitivity to enable closed loop temperature control of wafers during film growth and processing. The apparatus operates across a wide range of temperatures covering all of the required range for common semiconductor substrates.
Abstract:
A wavemeter and method for measuring bandwidth for a high repetition rate gas discharge laser having an output laser beam comprising a pulsed output of greater than or equal to 15 mJ per pulse, sub-nanometer bandwidth tuning range pulses having a femptometer bandwidth precision and tens of femptometers bandwidth accuracy range, for measuring bandwidth on a pulse to pulse basis at pulse repetition rates of 4000 Hz and above, is disclosed which may comprise a focusing lens having a focal length; an optical interferometer creating an interference fringe pattern; an optical detection means positioned at the focal length from the focusing lens; and a bandwidth calculator calculating bandwidth from the position of interference fringes in the interference fringe pattern incident on the optical detection means, defining a DID and a DOD, the respective distances between a pair of first fringe borders and between a pair of second fringe borders in the interference pattern on an axis of the interference pattern, and according to the formula Δλ=λ0[DOD2−DID2]/[8f2−D02], where λ0 is an assumed constant wavelength and D0=(DOD−DID)/2, and f is the focal length. The optical detector may be a photodiode array. The wavemeter may have an optical interferometer having a slit function; the slit function and the focal length being selected to deliver to the optical detector the two innermost fringes of the optical interference ring pattern. The optical detector may comprise an array of pixels each having a height and width and the array having a total width; and an aperture at the optical input to the optical interferometer may selectively input to the optical interferometer a portion of a beam of light sufficient for the output of the etalon to illuminate the optical detector over the height of each respective pixel height and the total width. The optical interferometer may comprise an etalon having a slit function of 3 pm or less and a finesses of 25 or greater; and the focal length may be 1.5 meters. A second stage diffuser may be placed between the first stage diffuser and the etalon delivering a narrow cone of light to the etalon, and an aperture between the second stage diffuser and the etalon may deliver to the etalon a thin strip of the narrow cone of light.
Abstract:
The present invention provides a wavemeter for an ultraviolet laser capable of long life beam quality monitoring in a pulsed ultraviolet laser system at pulse rates greater than 2000 Hz at pulse energies at 5 mJ or greater. In a preferred embodiment an enhanced illumination configuration reduces per pulse illumination of an etalon by a factor of 28 compared to a popular prior art configuration. Optics are provided in this embodiment which reduce light entering the etalon to only that amount needed to illuminate a linear photo diode array positioned to measure interference patterns produced by the etalon. In this preferred embodiment two sample beams produced by reflections from two surfaces of a beam splitter are diffused by a defractive diffuser and the output of the defractive diffuser is focused on two separate secondary diffusers effectively combining both beams in two separate spectrally equivalent diffuse beams. One beam is used for wavelength and bandwidth measurement and the other beam is used for calibration. In preferred embodiments an etalon chamber contains nitrogen with an oxygen concentration of between 1.6 and 2.4 percent.
Abstract:
A spectroscopy system having enhanced noise reduction that comprises (i) an arc lamp light source of emitted light, which emitted light is projected as an image of the light source; (ii) a slit aperture through which the emitted light is projected; and (iii) a detector operably associated with the slit aperture for detecting the emitted light. The slit aperture, the arc lamp, and the image of the arc lamp each have a major axis. The major axis of the slit aperture is oriented essentially orthogonally to the major axis of the image of the arc lamp, so that the signal-to-noise ratio of the spectroscopy system is improved as compared to the signal-to-noise ratio of the spectroscopy system when the major axis of the slit aperture is oriented essentially parallel to the major axis of the image of the arc lamp.
Abstract:
An all-reflective imaging spectrometer (10) has a three-mirror anastigmat (12) acting as its objective and a reflective triplet (14) with a dispersive element (18) providing the spectrometer collimator and imager. The system is capable of imaging an object being viewed to provide a plurality of different wavelength images of that object.
Abstract:
An improved optical system is disclosed for rapid, accurate spectral analysis of the reflectivity or transmissivity of samples. A concave holographic diffraction grating oscillated at high speed is utilized to provide a rapid scanning of monochromatic light through a spectrum of wavelengths. The grating is positively driven at very high speed. The rapid scan by the grating enables the reduction of noise error by averaging over a large number of cycles. It also reduces the measurement time and thus prevents sample heating by excessive exposure to light energy. A filter wheel having opaque segments is rotated in the optical path and is synchronous with the grating. The filter wheel is divided into two arcuate segments separated by the opaque segments arranged approximately 180 degrees apart. One arcuate segment of the wheel transmits only first order light. The other arcuate segment transmits only second order light. Separate photodetectors are employed during infrared analysis of samples for detecting first order and second order wavelength transmissions and an electronic decoder apparatus is utilized for switching between detectors.
Abstract:
The present invention is directed to an assembly for use in detecting an analyte in a sample based on thin-film spectral interference. The assembly includes a light source to emit light signals; a light detector to detect light signals; a coupler to optically couple the light source and the light detector to a waveguide tip; a monolithic substrate having a coupling side and a sensing side; and a lens between the waveguide tip and the monolithic substrate. The lens relays optical signals between the waveguide tip and the monolithic substrate.
Abstract:
A disease diagnosis and skin age measurement apparatus includes: a first light collection unit; a second light collection unit; a spectrometer configured to measure a spectrum of the light which is collected by the second light collection unit; a spectrum data comparison unit for disease diagnosis configured to compare the spectrum measured by the spectrometer and reference spectrum data for disease diagnosis; a CCD; an image data comparison unit configured to compare the digital image converted by the CCD and a reference image; a disease diagnosis unit configured to determine whether there is a disease in the body tissue; and/or a spectrum data comparison unit for skin age measurement configured to measure skin age by comparing a spectrum measured by the spectrometer and reference spectrum data for skin age measurement, wherein the light projected onto the body tissue is collimate light.
Abstract:
A light source for near-infrared transmission and reflection spectroscopy can be constructed from a combination of a high power blue or blue-green light emitting diode (LED) and a phosphor element based on an inorganic material. The phosphor element absorbs the LED light and, in response to the LED excitation, emits luminescence that continuously covers the 700-1050 nm range. One possible material that can be used for such a near-infrared emitting phosphor element is a single crystal rod of Ti+3 doped Sapphire. An alternative near-infrared emitting phosphor material is a disk or rectangular shaped composite of Ti+3 doped Sapphire powder embedded in a clear optical epoxy or silicone encapsulant. Such a combination of a blue LED for excitation of a phosphor element that emits in a broad wavelength band has been widely used in white LEDs where the emission is in the 400-700 nm range.