Abstract:
An infrared laser spectrometer employs a laser and a thermoelectrically cooler detector. The spectrometer uses a monolithic ring mirror with a single aperture that serves to accept the input laser illumination and the output optical signal. The laser is tunable. The number of passes of the input laser illumination can be controlled, so as to define a laser path length. In some embodiments, the ring mirror is open to the atmosphere, and in other embodiments the ring mirror is closed from the ambient atmosphere to allow samples of known origin to be measured in the spectrometer.
Abstract:
A system and method of implementing a two-stage scanning technique with a high-speed microscope. The microscope is operable to provide spectrally resolved, multi-dimensional images from a single scan of a sample. The microscope may include one of a multi-beam point scanning microscope, a single beam line scanning microscope, and a multi-beam line scanning microscope. The sample is first tagged such that, if the sample has a particular makeup, it emits energy at particular wavelengths upon receiving excitation beams. The microscope is used to perform a first, wide area scan. If the sample is determined to have emitted energy having particular characteristics, the microscope performs a second, focused scan of the area that emitted the energy having the particular characteristics. The two-stage scanning technique is automated and may be used to quickly identify rare cells, microbes, viruses, and other components within one or more samples.
Abstract:
A multi field of view hyperspectral imaging device and method for using the same are described herein. In one embodiment, the multi field of view hyperspectral imaging device comprises multiple fore optics, multiple fold mirrors, a slit including a multiple openings, a spectrometer, and a 2-dimensional detector.
Abstract:
Hyperspectral imaging system and methods that may be used for imaging objects in three-dimensions are disclosed. A cylindrical lens array and/or a slit array may be used to re-image and divide a field of view into multiple channels. The multiple channels are dispersed into multiple spectral signatures and observed on a two-dimensional focal plane array in real time. The entire hyperspectral data cube is collected simultaneously.
Abstract:
A system and method for determining a disease state and clinical outcome of a sample. A sample is illuminated to produce Raman scattered photons, the Raman scattered photons are assessed to generate a Raman spectroscopic data set representative of the sample, wherein said Raman spectroscopic data set comprises at least one of: a Raman spectra of the sample and a spatially accurate wavelength resolved Raman image of the sample; the Raman spectroscopic data set is evaluated using a chemometric technique to classify the disease state of the sample as: acute, chronic, incipient, or none. In one embodiment, the chemontric technique is principle component analysis. In another embodiment, the sample is obtained prior to transplantation and analysis can determine the likelihood of rejection by a host.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
An optical broadband micro-spectrometer containing an input optical assembly, a group of slab waveguide spatial heterodyne spectrometer (SHS) integrated circuits (ICs), a detection module and a processor for multi-line detection. The input optical assembly applies an input light signal uniformly with respect to brightness and frequency to the apertures of the waveguides and may project a pupil image onto the SHS input face and may be a scanner. Each slab waveguide spatial heterodyne spectrometer (SHS) integrated circuit (IC) contains at least one slab waveguide SHS IC. The detection module bonds directly to the slab waveguide output apertures. Each slab waveguide SHS IC may contain one or more slab waveguide SHS.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
The optical assemblies disclosed herein advantageously utilize a beamsplitting apparatus in association with either (i) the illumination path or (ii) the collection path of a color measurement instrument. For implementations involving the illumination path, the beamsplitting apparatus may be configured to spectrally divide one or more initial beams of light so as to emit a plurality of resultant beams of light, wherein the optical assembly is configured to illuminate a target using at least a first and a second of the plurality of resultant beams of light. Similarly, for implementations involving the collection path, the beamsplitting apparatus may be configured to spectrally divide light received from a target so as to emit a plurality of resultant beams of light, wherein the optical assembly is configured to detect at least a first and a second of the plurality of resultant beams of light. Advantageously, each of the first and second resultant beams of light is a product of a distinct set of one or more spectral constraints exacted by the beamsplitting apparatus.
Abstract:
A multi-angle and multi-channel detecting device for detecting one or more than one samples is provided. The device has a light collector and a multi-channel kernel module. The light collector has a plurality of fiber probes arranged perpendicular to and/or inclined to the sample(s) so as to collect light signals. The kernel module is coupled to the light collector for detecting the sample(s).