Abstract:
A method and apparatus for obtaining reference samples during the generation of a mid-infrared (MW) image without requiring that the sample being imaged be removed is disclosed. A tunable MIR laser generates a light beam that is focused onto a specimen on a specimen stage that moves the specimen in a first direction. An optical assembly includes a scanning assembly having a focusing lens and a mirror that moves in a second direction, different from the first direction, relative to the stage such that the focusing lens maintains a fixed distance between the focusing lens and the specimen stage. A light detector measures an intensity of light leaving the point on the specimen. A controller forms an image from the measured intensity. A reference stage is positioned such that the mirror moves over the reference stage in response to a command so that the controller can also make a reference measurement.
Abstract:
Provided is a filler connection part inspection method by which the connection state of both end surfaces of a belt-shaped filler that has been affixed annularly along the outer periphery of a bead core is inspected. The filler connection part inspection method includes a step of obtaining data of the distance between optical sensors and side surfaces of the filler by scanning, at the side surfaces of the filler, sections of the vicinity of the both end surfaces along the tangential direction of the filler over a predetermined scanning range with the optical sensors, a step of repeating the data obtaining step while the positions of the optical sensors are changed along the radial direction of the filler, and a step of comparing the obtained data with reference data that is set in advance.
Abstract:
A terahertz scanning reflectometer system is described herein for in-situ measurement of polymer coating thickness, semiconductor wafer's surface sub-surface inspection in a non-destructive and non-invasive fashion with very high resolution (e.g., 25 nm or lower) and spectral profiling and imaging of surface and sub-surface of biological tissues (e.g., skin) in a non-invasive fashion.
Abstract:
A scanning module (9) is disposed over a first plate (32). A first motor (39) of moving the scanning module (9) in a second scanning direction and a second motor (49) of moving the scanning module (9) in a first scanning direction are disposed under the first plate (32). In this manner, the first motor (39) and the second motor (49) being a heat source are disposed on a side opposite to a scanning module (9) side using the first plate (32) as a boundary, and thus a transferred amount of heat from the first motor (39) and the second motor (49) to the scanning module (9) decreases. As a result, accuracy of fluorescence detection is prevented from degrading due to thermal distortion of a detection optical system in the scanning module (9).
Abstract:
Dual mounting head scanners measure the thickness of flexible moving porous webs and employ an air clamp on the operative surface of the lower head to maintain the web in physical contact with a measurement surface. As the web is held firmly by the clamp, the vacuum level that is established is indicative of the porosity of the membrane. As compressed air is supplied to a vacuum generator at a given operational pressure, the rate of airflow through the web can be inferred from the vacuum pressure measurements. The rate of airflow through the membrane and therefore the porosity of the membrane are related to the vacuum level. It is not necessary to measure the airflow through the membrane. From the vacuum pressure measurements, the membrane's permeability can also be determined by correlation to empirical data. Thickness measurements are effected by optical triangulation and inductive proximity measurements.
Abstract:
A system and method for locating and identifying unknown samples. A targeting mode may be utilized to scan regions of interest for potential unknown materials. This targeting mode may interrogate regions of interest using SWIR and/or fluorescence spectroscopic and imaging techniques. Unknown samples detected in regions of interest may be further interrogated using a combination of Raman and LIBS techniques to identify the unknown samples. Structured illumination may be used to interrogate an unknown sample. Data sets generated during interrogation may be compared to a reference database comprising a plurality of reference data sets, each associated with a known material. The system and method may be used to identify a variety of materials including: biological, chemical, explosive, hazardous, concealment, and non-hazardous materials.
Abstract:
Translational motion of a scanning head relative to a planar target, or vice versa, is achieved by a belt and pulley system with a counterweight that is also driven by a belt and pulley system at the same speed but in the opposite direction as the scanning head. The components and belt and pulley system are oriented such that all moving components remain on one side of the target and remain so during their entire range of movement.
Abstract:
The present invention is an appearance inspection apparatus and method utilizing multiple light sources in a lighting unit 30 to alternately irradiate, line by line, side light from a side light source and slit light from a slit light source onto board 1 to be inspected. A correction value memory unit stores digital correction values required for correcting shadings for the side light source and the slit light source and an analysis unit utilizes these digital correction values to correct shadings on the image data. A highly accurate image is thus obtained.
Abstract:
A portable biochip scanner includes a surface plasmon resonance unit formed in a rotational disk-shape and an optical head projecting light to the surface plasmon resonance unit at an angle within a predetermined range and detecting light totally-reflected from the surface plasmon resonance unit. The optical head is movable in a radial direction of the surface plasmon resonance unit.
Abstract:
A colloidal system for detection of a variety of analytes involves techniques which permit reconstitution of a desiccated substance such as for surface enhanced Raman spectroscopic analysis and multiple sensors at once, each having different spectra through the use of markers or the like. Competitive assay techniques and a variety of substances are explained to permit a practical an versatile system which can also be used for immunological assays and can include antibodies tagged to provide spectroscopic indicia.